Skip to main content

Advertisement

Log in

The effects of pretreatment with lithium metaborate dihydrate on lipid peroxidation and Ca, Fe, Mg, and K levels in serum of Wistar albino male rats exposed to Cd

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Boron and boron compounds have beneficial biological effects. Lithium metaborate dihydrate (LMBDH) is used in many branches of industry. Despite its wide industrial use, there is limited information about its biological effects on antioxidant defense system and trace element homeostasis. Therefore, the aim of this study was to evaluate the in vivo protective effects of LMBDH against CdCl2-induced oxidative stress and imbalance of some bioelements for the first time. In the study, totally 20 Wistar albino male rats were used. The rats were fed with pellet food and water ad libitum and divided into four groups including five rats in each. Group I was control group (standard pellet food + water + normal saline), Group II was CdCl2 (4.58 mg/kg/body weight/intraperitoneally/single dose), Group III was LMBDH (15 mg/kg/body weight/day orally, for 5 days), Group IV was CdCl2 (4.58 mg/kg/body weight/intraperitoneally/single dose in fifth day), and LMBDH (15 mg/kg/body weight/day orally for 5 days). The results showed that CdCl2 treatment increased blood MDA level and decreased antioxidant enzyme activities and the level of blood GSH compared to control group. Pretreatment with LMBDH significantly decreased MDA levels and increased SOD activity (p < 0.05). In addition, Ca, Fe, and K levels decreased in LMBDH pretreatment group in different statistically levels. However, Mg levels showed an increase in LMBDH pretreatment group. As a result, LMBDH pretreatment decreased MDA status and supported antioxidant system by increasing SOD activity. In addition, it did not exhibit an ameliorative effect on measured bioelement homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ahmada M, Abu Taweel GM, Hidayathulla S (2018) Nano-composites chitosan-curcumin synergistically inhibits the oxidative stress induced by toxic metal cadmium. Int J Biol Macromol 108:591–597

    Google Scholar 

  • Ando KI, Matsui H, Fujita M, Fujita T (2010) Protective effect of dietary potassium against cardiovascular damage in salt-sensitive hypertension: possible role of its antioxidant action. Curr Vasc Pharmacol 8:59–63

    CAS  Google Scholar 

  • Appleby GA, Vontobel P (2008) Optimisation of lithium borate- barium chloride glass-ceramic thermal neutron imaging plates. Nucl instrum Meth A 594(2):253–254

    CAS  Google Scholar 

  • Athmounia K, Belhaja D, El Feki A, Ayadi H (2018) Optimization, antioxidant properties and GC–MS analysis of Periploca angustifolia polysaccharides and chelation therapy on cadmium-induced toxicity in human HepG2 cells line and rat liver. Int J Biol Macromol 108:853–862

    Google Scholar 

  • Avino P, Capannesi G, Manigrasso M, Sabbioni E, Rosada A (2011) Element assessment in whole blood, serum and urine of three Italian healthy sub-populations by INAA. Microchem J 99(2):548–555

    CAS  Google Scholar 

  • Bagchi D, Joshi SS, Bagchi M, Balmoori J, Benner EJ, Kuszynski CA, Stohs SJ (2000) Cadmium and chromium induced oxidative stress, DNA damage, and apoptotic cell death in cultured human chronic myelogenous leukemic k562 cells, promyelocytic leukemic HL-60 cells, and normal human peripheral blood mononuclear cell. J Biochem Mol Toxicol 14(1):33–41

    CAS  Google Scholar 

  • Beutler E, Dubon O, Kelly BM (1963) Improved method for the determination of blood glutathione. J Lab Clin Med 61:882–888

    CAS  Google Scholar 

  • Bjørklund G, Crisponi G, Nurchi VM, Cappai R, Djordjevic AB, Aaseth J (2019) A review on coordination properties of Thiol-containing chelating agents towards mercury, cadmium, and lead. Molecules 24(18):3247

    Google Scholar 

  • Blazka ME, Shaikh ZA (1992) Cadmium and mercury accumulation in rat hepatocytes: interactions with other metal ions. Toxicol Appl Pharmacol 113:118–125

    CAS  Google Scholar 

  • Block S and Perloff A (1963) Acta crystallography (Kirk-Othmer encyclopedia of chemical tachnology). 16: 1223

  • Buha A, Wallace D, Matovic V, Schweitzer A, Oluic B, Micic D, Djordjevic V (2017) Cadmium exposure as a putative risk factor for the development of pancreatic cancer: three different lines of evidence. Biomed Res Int 2017:1–8

    Google Scholar 

  • Buha A, Matovic V, Antonijevic B, Bulat Z, Curcic M, Renieri EA, Tsatsakis AM, Schweitzer A, Wallace D (2018) Overview of cadmium thyroid disrupting effects and mechanisms. Int J Mol Sci 19(5):1501

    Google Scholar 

  • Buha A, Jugdaohsingh R, Matovica V, Bulata Z, Antonijevica B, Kernsc JG, Goodshipd A, Hartd A, Powell JJ (2019) Bone mineral health is sensitively related to environmental cadmium exposure-experimental and human data. Environ Res 176:108539

    Google Scholar 

  • Burtis C, Ashwood E, Bruns D (2012) Tietz textbook of clinical chemistry and molecular diagnostics. Elsevier, St. Louis

    Google Scholar 

  • Cao H, Gao F, Xia B, Zhang M, Liao Y, Yang Z, Hu G, Zhang C (2016a) Alterations in trace element levels and mRNA expression of Hsps and inflammatory cytokines in livers of duck exposed to molybdenum or/and cadmium. Ecotoxicol Environ Saf 125:93–101

    CAS  Google Scholar 

  • Cao H, Gao F, Xia B, Xiao Q, Guo X, Hu G, Zhang C (2016b) The co-induced effects of molybdenum and cadmium on the mRNA expression of inflammatory cytokines and trace element contents in duck kidneys. Ecotoxicol Environ Saf 133:157–163

    CAS  Google Scholar 

  • Casalino E, Calzaretti G, Sblano C, Landriscina C (2002) Molecular inhibitory mechanisms of antioxidant enzymes in rat liver and kidney by cadmium. Toxicology 179:37–50

    CAS  Google Scholar 

  • Celikezen B (2016) The protective effects of borax on doxorubucine induced cardiotoxicity in rats. University of Fırat, Dissertation

    Google Scholar 

  • Celikezen FÇ, Türkez H, Başak T (2014) In vitro assessment of genotoxic and oxidative effects of zinc borate. Toxicol Environ Chem:777–782

    Google Scholar 

  • Celikezen FÇ, Toğar B, Özgeriş FB, İzgi MS, Türkez H (2016) Cytogenetic and oxidative alterations after exposure of cultured human whole blood cells to lithium metaborate dehydrate. Cytotechnology 68:821–827. https://doi.org/10.1007/s10616-014-9833-x

    Article  CAS  Google Scholar 

  • Chatterjee R, Yeh HC, Shafi T, Selvin E, Anderson C, Pankow JS, Miller E, Brancati F (2010) Serum and dietary potassium and risk of incident type 2 diabetes mellitus: the atherosclerosis risk in communities (ARIC) study. Arch Intern Med 170:1745–1751

    CAS  Google Scholar 

  • Chen M, Li X, Fan R, Cao C, Yao H, Xu S (2017) Selenium antagonizes cadmium-induced apoptosis in chicken spleen but not involving Nrf2-regulated antioxidant response. Ecotox Environ Safe 145:503–510

    CAS  Google Scholar 

  • Costello R, Wallace TC, Rosanoff A (2016) Magnesium. Adv Nutr 7(1):199–201

    CAS  Google Scholar 

  • D’Elia L, Barba G, Cappuccio FP, Strazzullo P (2011) Potassium intake, stroke, and cardiovascular disease a meta-analysis of prospective studies. J Am Coll Cardiol 57:1210–1219

    Google Scholar 

  • Devirian TA, Volpe SL (2003) The physiological effects of dietary boron. Crit Rev Food Sci Nutr 43:219–231

    CAS  Google Scholar 

  • Duruibe JO, Ogwuegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2(5):112–118

    Google Scholar 

  • El-Sharaky AS, Newairy AA, Badreldeen MM, Eweda SM, Sheweita SA (2007) Protective role of selenium against renal toxicity ınduced by cadmium in rats. Toxicology 235:185–193

    CAS  Google Scholar 

  • Emerit J, Beaumont C, Trivin F (2001) Iron, free radicals, and oxidative injury. Biomed Pharmacother 55:333–339

    CAS  Google Scholar 

  • Eybl V, Kotyzová D, Bludovská M (2004) The effect of curcumin on cadmium-induced oxidative damage and trace elements level in the liver of rats and mice. 2004 151(1); 79-85

  • Farris MW (1991) Cadmium toxicity: unique cytoprotective properties of a-tocopheryl succinate in hepatocytes. Toxicology 69:63–77

    Google Scholar 

  • Feki-Tounsi M, Hamza-Chaffai A (2014) Cadmium as a possible cause of bladder cancer: a review of accumulated evidence. Environ Sci Pollut Res 21:10561–10573

    CAS  Google Scholar 

  • Filipič M (2012) Mechanisms of cadmium induced genomic instability. Mutat Res-Fund Mol M 733(1):69–77

    Google Scholar 

  • Fridovich I (1997) Superoxide anion radical (O2−:), superoxide dismutases, and related matters. The J of Bio Chem 272(30):18515–18517

    CAS  Google Scholar 

  • Geyikoğlu F, Türkez H (2008) Boron compounds reduce vanadium tetraoxide genotoxicity in human lymphocytes. Environ Toxicol Pharmacol 26:342–347

    Google Scholar 

  • Göktaş Ö (2007) Protective effect of resveratrol on cadmium induced oxidative stress. University of İnönü, Dissertation

    Google Scholar 

  • Goyer RA (1997) Toxic and essential metal interactions. Annu Rev Nutr 17:37–50

    CAS  Google Scholar 

  • Gröber U, Schmidt J, Kisters K (2015) Magnesium in prevention and therapy. Nutrients 7(9):8199–8226

    Google Scholar 

  • Guemouri L, Artur Y, Herbeth B, Jeadel C, Siest G (1991) Biological variability of superoxide dismutase, glutathione peroxidase, and catalase in blood. Clin Chem 37:1932–1937

    CAS  Google Scholar 

  • Gutteridge JM (1995) Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem 41:1819–1828

    CAS  Google Scholar 

  • Halliwall B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement and significance. Am J Clin Nutr 57:715–724

    Google Scholar 

  • Hudecova A, Ginter E (1992) The influence of ascorbic acid on lipid peroxidation in Guinea pigs intoxicated with cadmium. Food Chem Toxicol 30:1011–1013

    CAS  Google Scholar 

  • Hunt CD (1989) Dietary boron modified the effect of magnesium and molybdenum on mineral metabolism in the cholecalciferol-deficient chick. Biol Trace Elem Res 22:201–220

    CAS  Google Scholar 

  • Ince S, Kucukkurt I, Cigerci IH, Fidan AF, Eryavuz A (2010) The effects of dietary boric acid and borax supplementation on lipid peroxidation, antioxidant activity, and DNA damage in rats. J Trace Elem Med Biol 24:161–164

    CAS  Google Scholar 

  • Ingamells CO (1970) Lithium metaborate flux in silicate analysis. Anal Chim Acta 52(2):323

    CAS  Google Scholar 

  • Jacquet A, Arnaud J, Hininger-Favier I, Hazane-Puch F, Couturier K, Lénon M, Fédéric L, Fçal O, Fontaine E, J-Marc M, Demeilliers C (2018) Impact of chronic and low cadmium exposure of rats: sex specific disruption of glucose metabolism. Chemosphere 207:764–773

    Google Scholar 

  • Karaca Ö, Sunay FB, Kuş MA, Gülcen B, Özcan E, Ögetürk M, Kuş İ (2004) Investigation of biochemical and histopathological levels of effects of melatonin against cadmium-induced liver injury. Fırat Med J 19:110–115

    Google Scholar 

  • Karaman A, Kadı M, Kara F (2009) Sister chromatid exchange and micronucleus studies in patients with Behcet’s disease. J Cutan Pathol 36:831–837

    Google Scholar 

  • Kasperczyk S, Kasperczyk J, Ostałowska A, Zalejska-Fiolka J, Wielkoszynski T, Swietochowska E, Birkner E (2009) The role of the antioxidant enzymes in erythrocytes in the development of arterial hypertension among humans exposed to lead. Biol Trace Elem Res 130:95–106

    CAS  Google Scholar 

  • Kolusari A, Kurdoglu M, Yildizhan R, Adali E, Edirne T, Cebi A, Demir H, Yörük IH (2008) Catalase activity, serum trace element and heavy metal concentrations, and vitamins A, D and E levels in pre-eclampsia. J Int Med Res 36:1335–1341

    CAS  Google Scholar 

  • Kruszewski M (2003) Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res Fundam Mol Mech Mutagen 531:81–92

    CAS  Google Scholar 

  • Kuriwaki J, Nishijo M, Honda R, Tawara K, Nakagawa H, Hori E, Nishijo H (2005) Effects of cadmium exposure during pregnancy on trace elements in fetal rat liver and kidney. Toxicol Lett 156:369–376

    CAS  Google Scholar 

  • Larsson SC, Orsini N, Wolk A (2015) Urinary cadmium concentration and risk of breast cancer: a systematic review and dose-response meta-analysis. Am J Epidemiol 182:375–380

    Google Scholar 

  • Levasseur A and Pecquenard A (2009) Brigitte method for the manufacturing of sputtering targets using an inorganic polymer. Europan Patent Application EP 2 135 973 A1, 12-23

  • Mahan L, Escott-Stump S (2008) Krause's food & nutrition therapy. Elsevier, St. Louis

    Google Scholar 

  • Martelli A, Rousselet E, Dycke C, Bouron A, Moulis JM (2006) Cadmium toxicity in animal cells bĆy interference with essential metals. Biochimie 88:1807–1814

    CAS  Google Scholar 

  • Matović V, Buha A, Bulat Z, Dukić-Ćosić D (2011) Cadmium toxicity revisited: focus on oxidative stress induction and interactions with zinc and magnesium. Arch Ind Hyg Toxicol 62:65–76

    Google Scholar 

  • Matović V, Buha A, Dukić-Cosić D, Bulat Z (2015) Insight into the oxidative stress induced by lead and/or cadmium in blood, liver and kidneys. Food Chem Toxicol 78:130–140

    Google Scholar 

  • Matsuoka M, Igisu H (1998) Activation of c-Jun NH2-terminal kinase (JNK/SAPK) in LLC-PK1 cells by cadmium. Biochem Biophys Res Commun 251:527–532

    CAS  Google Scholar 

  • McCoy H, Kenny MA, Montgomery C (1994) Relation of boron to the composition and chemical properties of bone. Environ Health Perspect 102:49–53

    CAS  Google Scholar 

  • Meacham SL, Taper LJ, Volpe SL (1994) Effects of boron supplementation on bone mineral density and dietary, blood, and urinary calcium, phosphorus, magnesium, and boron in female athletes. Environ Health Perspect 102:79–82

    CAS  Google Scholar 

  • Mendez-Gomez J, García-Vargas GG, Lopez-Carrillo L, Calderon-Aranda ES, Gomez A, Vera E, Valverde M, Cebrián ME, Rojas E (2008) Genotoxic effects of environmental exposure to arsenic and lead on children in region Lagunera, Mexico. Ann NY Acad Sci 1140:358–367

    Google Scholar 

  • Mezynska M, Brzóska MM (2018) Environmental exposure to cadmium—a risk for health of the general population in industrialized countries and preventive strategies. Environ Sci Pollut Res 25:3211–3232

    CAS  Google Scholar 

  • Moulis JM (2010). Cellular mechanisms of cadmium toxicity related to the homeostasis of essential metals. Biometals. https://doi.org/10.1007/s10534-010-9336-y

    CAS  Google Scholar 

  • Moulis JM, Thévenod F (2010) New perspectives in cadmium toxicity: an introduction. Biometals 23(5):763–768

    CAS  Google Scholar 

  • Nabuyoshi K, Takahide U (2006) Thermal dehydration of lithium metaborate dihydrate and phase transitions of anhydrous produced. Thermochim Acta 443(2):197–205

    Google Scholar 

  • Noel L, Guerin T, Kolf-Clauw M (2004) Subchronic dietary exposure of rats to cadmium alters the metabolism of metals essential to bone health. Food Chem Toxicol 42:1203–1210

    CAS  Google Scholar 

  • Ognjanovic BI, Markovic SD, Pavlovic SZ, Zikic RV, Stajn A, Saicic ZS (2008) Effect of chronic cadmium exposure on antioxidant defense system in some tissues of rats: protective effect of selenium. Physiol Res 57:403–411

    CAS  Google Scholar 

  • Ognjanovic BI, Markovic SD, Ðordević NZ, Trbojević IS, Stajn AS, Saicić ZS (2010) Cadmium-induced lipid peroxidation and changes in antioxidant defense system in the rat testes: protective role of coenzyme Q10 and vitamin E. Reprod Toxicol 29:191–197

    CAS  Google Scholar 

  • Pari L, Murugavel P (2005) Role of diallyl tetrasulfide in ameliorating the cadmium induced biochemical changes in rats. Environ Toxicol Pharmacol 20:493–500

    CAS  Google Scholar 

  • Paulsen S, Cardoso SC, Stelling MP, Cadilhe DV, Rehen SK (2014) Valproate reverts zinc and potassium imbalance in schizophrenia-derived reprogrammed cells. Schizophr Res 154:30–35

    Google Scholar 

  • Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5:23–30

    Google Scholar 

  • Prasad NR, Srinivasan M, Pugalendi KV, Menon VP (2006) Protective effect of ferulic acid on gamma-radiation-induced micronuclei, dicentric aberration and lipid peroxidation in human lymphocytes. Mutat Res 603:129–134

    CAS  Google Scholar 

  • Prashanth L, Kattapagari KK, Chitturi RT, Baddam VRR, Lingamaneni KP (2015) A review on role of essential trace elements in health and disease. J NTR Univ. Health Sci 4(2):75–85

  • Puri VN, Saha S (2003) Comparison of acute cardiovascular effects of cadmium and captopril in relation to oxidant and angiotensin converting enzyme activity in rats. Drug Chem Toxicol 26(3):213–218

    CAS  Google Scholar 

  • Quianqian H, Shenge L, Enmei Q (2014) Effects of boron on structure and antioksidative activities of spleen in rats. Biol Trace Elem Res 158:73–80

    Google Scholar 

  • Rizzi R, Caroli A, Bolla P, Acciailoi A, Pagnacco G (1998) Variability of reduced glutathione levels in massese ewes and its effect on daily milk production. J Dairy Res 55:345–353

    CAS  Google Scholar 

  • Rodushkin I, Ödman F, Branth S (1999) Multielement analysis of whole blood by high resolution inductively coupled plasma mass spectrometry. Fresenius J Anal Chem 364(4):338–346

    CAS  Google Scholar 

  • Sahin E, Gümüşlü S (2004) Cold-stress-induced modulation of antioxidant defence: role of stressed conditions in tissue injury followed by protein oxidation and lipid peroxidation. Int J Biometeorol 48(4):165–171

    CAS  Google Scholar 

  • Saïd L, Banni M, Kerkeni A, Saïd K, Messaoudi I (2010) Influence of combined treatment with zinc and selenium on cadmium induced testicular pathophysiology in rat. Food Chem Toxicol 48:2759–2765

    Google Scholar 

  • Schwerdtle T, Ebert F, Thuy C, Richter C, Mullenders LH, Hartwig A (2010) Genotoxicity of soluble and particulate cadmium compounds: impact on oxidative DNA damage and nucleotide excision repair. Chem Res Toxicol 23(2):432–442

    CAS  Google Scholar 

  • Stohs SJ, Bagchi D (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic Biol Med 18:321–336

    CAS  Google Scholar 

  • Stohs SJ, Bagchi D, Hassoun E, Bagchi M (2000) Oxidative mechanisms in the toxicity of chromium and cadmium ions. J Environ Pathol Toxicol Oncol 19(3):201–213

    CAS  Google Scholar 

  • Sushil JK, Mcuie R, Duett J, Herbest JJ (1989) Erythrocyte membrane lipid peroxidation and glycosylated hemoglobin in diabetes. Diabetes 38(12):1539–1543

    Google Scholar 

  • Svistunenko DA (2005) Reaction of haem containing proteins and enzymes with hydroperoxides: the radical view. Biochim Biophys Acta 1707:127–155

    CAS  Google Scholar 

  • Tandon SK, Singh S, Prasad S, Khandekar K, Dwived VK, Chatterjee M, Mathur N (2003) Reversal of cadmium induced oxidative stress by chelating agent, antioxidant or their combination in rat. Toxicol Lett 145:211–217

    CAS  Google Scholar 

  • Thévenod F, Lee WK (2013) Cadmium and cellular signaling cascades: interactions between cell death and survival pathways. Arch Toxicol 87(10):1743–1786

    Google Scholar 

  • Türkez H (2007) The genetic and biochemical effects of some boron compounds on peripheral human blood in vitro. University of Atatürk, Dissertation

    Google Scholar 

  • Türkez H, Geyikoglu F, Tatar A, Keles MS, Kaplan I (2012) The effects of some boron compounds against heavy metal toxicity in human blood. Exp Toxicol Pathol 64(1):93–101

    Google Scholar 

  • Valko M, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    CAS  Google Scholar 

  • Wahba ZZ, Waalkes MP (1990) Cadmium-induced route-specific alterations in essential trace element homeostasis. Toxicol Lett 54:7–81

    Google Scholar 

  • Wallace DR, Spandidos DA, Tsatsakis A, Schweitzer A, Djordjevic V, Djordjevic AB (2019) Potential interaction of cadmium chloride with pancreatic mitochondria: implications for pancreatic cancer. Int J Mol Med 44(1):145–156

    CAS  Google Scholar 

  • WHO (1992) Cadmium. Environmental Health Criteria, Geneva

    Google Scholar 

  • WHO (1996) Organization trace elements in human nutrition and health. Belgium

  • Zhai Q, Narbad A, Chen W (2015) Dietary strategies for the treatment of cadmium and lead toxicity. Nutrients 7:552–571

    Google Scholar 

  • Zhang M (2002) E-One Moli Energy Canada Limited, Use of lithium borate on non-aqueous rechargeable lithium batteries, EUROPEAN PATENT, PatNo EP1237212

Download references

Acknowledgments

This work is derived from master thesis of Muhammed TAŞDEMİR.

Funding

This study was supported by Bitlis Eren University Scientific Research Projects Unit (BEBAP) under Grant No. 2014.16.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Çağlar Çelikezen.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict(s) of interest.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taşdemir, M., Çelikezen, F.Ç., Oto, G. et al. The effects of pretreatment with lithium metaborate dihydrate on lipid peroxidation and Ca, Fe, Mg, and K levels in serum of Wistar albino male rats exposed to Cd. Environ Sci Pollut Res 27, 7702–7711 (2020). https://doi.org/10.1007/s11356-019-07516-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07516-6

Keywords

Navigation