Skip to main content
Log in

Characterization of the copper resistance mechanism and bioremediation potential of an Acinetobacter calcoaceticus strain isolated from copper mine sludge

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bioremediation is one of the most effective ways for removal of heavy metals and restoration of contaminated sites. This study investigated the copper (Cu) resistance mechanism and bioremediation potential of an Acinetobacter calcoaceticus strain KW3 isolated from sludge of Cu mine. The effect of Cu concentrations on the bacterial growth, biomass, and adsorption capacity, as well as the effect of contact time on the adsorption process was evaluated in a batch biosorption test. The strain exhibited strong tolerance of Cu, and the minimal inhibitory concentration was around 400 mg Cu2+ L−1, at which the maximum adsorption capacity was 14.1 mg g−1 dry cell mass. Cell walls and intracellular soluble components adsorbed 51.2% and 46.6% of Cu2+, respectively, suggesting that the strain not only adsorbed Cu2+ on the surface but also metastasized ions into cells. The adsorption and kinetic data were well fitted with Freundlich isotherm and Pseudo-second-order models, suggesting that cell surface had a high affinity for Cu2+ and the chemisorption could be the main adsorption mechanism. Scanning electron microscope and Fourier transform infrared spectroscopy analysis revealed that hydroxyl, carboxylic, amide, sulfate, and phosphate on cell walls might be involved in the biosorption process. Two-dimensional gel electrophoresis and MALDI-TOF/TOF mass spectrometry revealed that some oxidoreductases, in particular Cu resistance protein A (CopA) expression levels, were upregulated. Antioxidant defense and P1B-type ATPases CopA efflux might play a crucial role in maintaining cellular homeostasis and intracellular detoxification. To our knowledge, this is the first time that Cu resistance mechanisms, especially intracellular enzymatic mechanisms, were identified in an A. calcoaceticus KW3 strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abioye OP (2011) Biological remediation of hydrocarbon and heavy metals contaminated soil. Soil Contam 201:127–142

    Google Scholar 

  • Abreu IA, Cabelli DE (2010) Superoxide dismutases—a review of the metal-associated mechanistic variations. Biochem Biophys Acta 1804:263–274

    CAS  Google Scholar 

  • Andersson FI, Tryggvesson A, Sharon M, Diemand AV, Classen M, Best C, Schmidt R, Schelin J, Stanne TM, Bukau B, Robinson CV, Witt S, Mogk A, Clarke AK (2009) Structure and function of a novel type of ATP-dependent Clp protease. J Biol Chem 284:13519–13532

    Article  CAS  Google Scholar 

  • Andreazza R, Pieniz S, Wolf L, Lee MK, Camargo FAO, Okeke BC (2010) Characterization of copper biosorption and bioreduction by a highly copper resistant bacterium isolated from copper-contaminated vineyard soil. Sci Total Environ 408:1501–1507

    Article  CAS  Google Scholar 

  • Aryal M, Liakopoulou-Kyriakides M (2015) Bioremoval of heavy metals by bacterial biomass. Environ Monit Assess 187:4173

    Article  CAS  Google Scholar 

  • Aryal M, Ziagova M, Liakopoulou-Kyriakides M (2012) Cu(II) biosorption and competitive studies in multi-ions aqueous systems by Arthrobacter sp. Sphe3 and Bacillus sphaericus cells: equillibrium and thermodynamic studies. Water Air Soil Pollut 223:5119–5130

    Article  CAS  Google Scholar 

  • Bondarczuk K, Piotrowska-Seget Z (2013) Molecular basis of active copper resistance mechanisms in gram-negative bacteria. Cell Biol Toxicol 29:397–405

    Article  CAS  Google Scholar 

  • Bradley JM, Le Brun NE, Moore GR (2016) Ferritins: furnishing proteins with iron. J Biol Inorg Chem 21:13–28

    Article  CAS  Google Scholar 

  • Bublitz M, Morth J, Nissen P (2011) P-type atpases at a glance. J Cell Sci 124:2515–2519

    Article  CAS  Google Scholar 

  • Cervantes C, Gutierrez-Corona F (1994) Copper resistance mechanisms in bacteria and fungi. FEMS Microbiol Rev 14:121–128

    Article  CAS  Google Scholar 

  • Chaturvedi KS, Henderson JP (2014) Pathogenic adaptations to host-derived antibacterial copper. Front Cell Infect Microbiol 4:3

    Article  CAS  Google Scholar 

  • Choudhary S, Sar P (2016) Real-time PCR based analysis of metal resistance genes in metal resistant Pseudomonas aeruginosa strain J007. J Basic Microbiol 56:688–697

    Article  CAS  Google Scholar 

  • De Alencar FLS, Navoni JA, DoAmaral VS (2017) The use of bacterial bioremediation of metals in aquatic environments in the twenty-first century: a systematic review. Environ Sci Pollut Res 24:16545–16559

    Article  Google Scholar 

  • Dell'Amico E, Mazzocchi M, Cavalca L, Allievi L, Andreoni V (2008) Assessment of bacterial community structure in a long-term copper-polluted exvineyard soil. Microbiol Res 163:671–683

    Article  CAS  Google Scholar 

  • Fan JX, Zhao GL, Sun JX (2017) Binary component sorption of cadmium, and copper ions onto Yangtze River sediments with different particle sizes. Sustainability 9:2089

    Article  CAS  Google Scholar 

  • Frees D, Chastanet A, Qazi S, Sorensen K, Hill P, Msadek T, Ingmer H (2004) Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Mol Microbiol 54:1445–1462

    Article  CAS  Google Scholar 

  • González-Guerrero M, Argüello JM (2008) Mechanism of Cu+-transporting ATPases: soluble Cu+ chaperones directly transfer Cu+ to transmembrane transport sites. Proc Natl Acad Sci 105:5992–5997

    Article  Google Scholar 

  • Grass G, Rensing C, Solioz M (2011) Metallic copper as an antimicrobial surface. Appl Environ Microbiol 77:1541–1547

    Article  CAS  Google Scholar 

  • Green F, Clausen CA (2003) Copper tolerance of brown-rot fungi: time course of oxalic acid production. Int Biodeterior Biodegradation 51:145–149

    Article  CAS  Google Scholar 

  • Guan Y, Shao C, Ju M (2014) Heavy metal contamination assessment and partition for industrial and mining gathering areas. Int J Environ Res Public Health 11:7286–7303

    Article  CAS  Google Scholar 

  • Han ZQ, Cui ZJ (2010) Reversible methionine residue oxidation in signalling proteins and methionine sulfoxide reductases. Acta Biophys Sin 26:861–879

    Google Scholar 

  • Hu HW, Wang JT, Li J, Li JJ, Ma YB, Chen D, He JZ (2016) Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environ Sci Technol 18:3896–3909

    CAS  Google Scholar 

  • Johnson KJ, Cygan RT, Fein JB (2006) Molecular simulations of metal adsorption to bacterial surfaces. Geochim Cosmochim Acta 70:5075–5088

    Article  CAS  Google Scholar 

  • Kay KL, Zhou L, Tenori L, Bradley JM, Singleton C, Kihlken MA, Ciofi-Baffoni S, Le Brun NE (2017) Kinetic analysis of copper transfer from a chaperone to its target protein mediated by complex formation. Chem Commun (Camb) 53:1397–1400

    Article  CAS  Google Scholar 

  • Kazy SK, Sar P, Singh SP, Sen AK, D'Souza SF (2002) Extracellular polysaccharides of a copper-sensitive and a copper-resistant Pseudomonas aeruginosa strain: synthesis, chemical nature and copper binding. World J Microbiol Biotechnol 18:583–588

    Article  CAS  Google Scholar 

  • Krick MH, Dameron CT (2013) Copper I transfer between Enterococcus hirae CopA, CopZ and CopY in vitro. J Biotech Res 5:1–9

    Google Scholar 

  • Kumar M, Upreti RK (2000) Impact of lead stress and adaptation in Escherichia coli. Ecotoxicol Environ Saf 47:246–252

    Article  CAS  Google Scholar 

  • Liu RX, Pan JH, Tang HX, Lao WX (2002) Biosorption mechanism of Cu(II) on Micrococcus luteus biomass. Environ Chem 21(1):50–55 (in Chinese)

    CAS  Google Scholar 

  • Liu Q, Wang X, Qin JX, Cheng S, Yeo WS, He L, Ma XW, Liu XY, Li M, Bae T (2017) The ATP-dependent protease ClpP inhibits biofilm formation by regulating agr and cell wall hydrolase Sle1 in Staphylococcus aureus. Front Cell Infect Microbiol 7:181

    Article  CAS  Google Scholar 

  • Lubos E, Loscalzo J, Handy DE (2011) Glutathione peroxidase-1 in health and disease: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal 15(7):1957–1997

    Article  CAS  Google Scholar 

  • Majumder S, Gangadhar G, Raghuvanshi S, Gupta SK (2015) A comprehensive study on the behavior of a novel bacterial strain Acinetobacter guillouiae for bioremediation of divalent copper. Bioprocess Biosyst Eng 38:1749–1760

    Article  CAS  Google Scholar 

  • Mancini S, Kumar R, Abicht HK, Fischermeier E, Solioz M (2016) Copper resistance and its regulation in the sulfate-reducing bacterium Desulfosporosinus sp. OT. Microbiology 162:684–693

    Article  CAS  Google Scholar 

  • Martínez-Bussenius C, Navarro CA, Jerez CA (2017) Microbial copper resistance: importance in biohydrometallurgy. Microb Biotechnol 10(2):279–295

    Article  CAS  Google Scholar 

  • Masood F, Malik A (2011) Biosorption of metal ions from aqueous solution and tannery effluent by Bacillus sp. FM1. J Environ Sci Health A 46:1667–1674

    Article  CAS  Google Scholar 

  • Maurya NS, Mittal AK (2014) Kinetic model for the immobilised biosorbents: uptake of cationic dyes. Chem Eng J 254:571–578

    Article  CAS  Google Scholar 

  • Ni H, Xiong Z, Ye T, Zhang Z, Ma X, Li L (2012) Biosorption of copper(II) from aqueous solutions using volcanic rock matrix-immobilized Pseudomonas putida cells with surface-displayed cyanobacterial metallothioneins. Chem Eng J 204-206:264–271

    Article  CAS  Google Scholar 

  • Nishimura K, Wijk KJV (2015) Organization, function and substrates of the essential Clp protease system in plastids. Biochim Biophys Acta 1847:915–930

    Article  CAS  Google Scholar 

  • Oriomah C, Adelowo OO, Adekanmbi AO (2015) Bacteria from spent engine-oil- contaminated soils possess dual tolerance to hydrocarbon and heavy metals, and degrade spent oil in the presence of copper, lead, zinc and combinations thereof. Ann Microbiol 65:207–215

    Article  CAS  Google Scholar 

  • Öztürk A, Artan T, Ayar A (2004) Biosorption of nickel(II) and copper(II) ions from aqueous solution by Streptomyces coelicolor A3(2). Colloid Surf B 34:105–111

    Article  CAS  Google Scholar 

  • Padilla-Benavides T, George TAM, McEvoy MM, Argüello JM (2014) Mechanism of atpase-mediated Cu+ export and delivery to periplasmic chaperones: the interaction of Escherichia coli copa and cusf. J Biol Chem 289(30):20492–20501

    Article  CAS  Google Scholar 

  • Rensing C, McDevitt SF (2013) The copper metallome in prokaryotic cells. Met Ions Life Sci 12:417–450

    Article  Google Scholar 

  • Rey-Mellano ME, Senoro DB, Tayo LL, Wan MW (2016) Adsorption of Cu (II) and Ni(II) in aqueous solution using biofilm supported with kaolinite clay. BCES, Pattaya, pp 17–22

    Google Scholar 

  • Rosenzweig AC, Argüello JM (2012) Toward a molecular understanding of metal transport by P1B-type ATPases. Curr Top Membr 69:119–136

    Google Scholar 

  • Saxena D, Joshi N, Srivastava S (2002) Mechanism of copper resistance in a copper mine isolate Pseudomonas putida strain S4. Curr Microbiol 45(6):410–414

    Article  CAS  Google Scholar 

  • Shahwan T, Erten HN (2002) Thermodynamic parameters of Cs+ sorption on natural clays. J Radioanal Nucl Chem 253:115–120

    Article  CAS  Google Scholar 

  • Singh S, Verma E, Tiwari B, Niveshika (2017) Modulation of fatty acids and hydrocarbons in Anabaena 7120 and its ntcA mutant under calcium. J Basic Microbiol 57:171–183

    Article  CAS  Google Scholar 

  • Sivaperumal P, Kamala K, Rajaram R (2018) Adsorption of cesium ion by marine actinobacterium Nocardiopsis sp.13H and their extracellular polymeric substances (EPS) role in bioremediation. Environ Sci Pollut Res Int 25:4254–4267

    Article  CAS  Google Scholar 

  • Su CC, Long F, Zimmermann MT, Rajashankar KR, Jernigan RL, Yu EW (2011) Crystal structure of the cusba heavy-metal efflux complex of Escherichia coli. Nature 470(7335):558–562

    Article  CAS  Google Scholar 

  • Subbaiah MV, Yun YS (2013) Biosorption of nickel (II) from aqueous solution by the fungal mat of Trametes versicolor (rainbow) biomass equilibrium, kinetics, and hermodynamic studies. Biotechnol Bioprocess Eng 18(2):280–288

    Article  CAS  Google Scholar 

  • Veneu DM, Torem ML, Pino GAH (2013) Fundamental aspects of copper and zinc removal from aqueous solutions using a Streptomyces lunalinharesii strain. Miner Eng 48:44–50

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Yun YS (2008) Bacterial biosorbents and biosorption. Biotechnol Adv 26:266–291

    Article  CAS  Google Scholar 

  • Wang JL, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27(2):195–226

    Article  CAS  Google Scholar 

  • Weeratunga S, Lovell S, Yao H, Battaile KP, Fischer CJ, Gee CE, Rivera M (2010) Structural studies of bacterioferritin B (BfrB) from Pseudomonas aeruginosa suggest a gating mechanism for iron uptake via the ferroxidase center. Biochem 49:1160–1175

    Article  CAS  Google Scholar 

  • Weissbach H, Etienne F, Hoshi T, Heinemann SH, Lowther WT, Matthews B, John GS, Nathan C, Brot N (2002) Peptide methionine sulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys 397(2):172–178

    Article  CAS  Google Scholar 

  • Williams CL, Neu HM, Gilbreath JJ, Michel SLJ, Zurawski DV, Merrell DS (2016) Copper resistance of the emerging pathogen Acinetobacter baumannii. Appl Environ Microbiol 82:6174–6188

    Article  CAS  Google Scholar 

  • Yadav KK, Mandal AK, Chakraborty R (2013) Copper susceptibility in Acinetobacter junii BB1A is related to the production of extracellular polymeric substances. Antonie Van Leeuwenhoek 104:261–269

    Article  CAS  Google Scholar 

  • Ye JS, Yin H, Xie DP, Peng H, Huang J, Liang WY (2013) Copper biosorption and ions release by Stenotrophomonas maltophilia in the presence of benzo[a]pyrene. Chem Eng J 219:1–9

    Article  CAS  Google Scholar 

  • Yun UJ, Park HD (2003) Physical properties of an extracellular polysaccharide produced by Bacillus sp. CP912. Lett Appl Microbiol 36:282–287

    Article  Google Scholar 

  • Zeiler E, List A, Alte F, Gersch M, Wachtel R, Poreba M, Drag M, Groll M, Sieber SA (2013) Structural and functional insights into caseinolytic proteases reveal an unprecedented regulation principle of their catalytic triad. PNAS 110:11302–11307

    Article  Google Scholar 

  • Zeng WM, Li F, Wu CC, Yu RL, Wu XL, Shen L, Liu YD, Qiu GZ, Li JK (2019) Role of extracellular polymeric substance (EPS) in toxicity response of soil bacteria Bacillus sp. S3 to multiple heavy metals. Bioprocess Biosyst Eng. https://doi.org/10.1007/s00449-019-02213-7

  • Zhang H, Hu X, Lu H (2017) Ni(II) and Cu(II) removal from aqueous solution by a heavy metal-resistance bacterium: kinetic, isotherm and mechanism studies. Water Sci Technol 76:859–868

    Article  CAS  Google Scholar 

  • Zietz BP, Vergara JD, Dunkelberg H (2003) Copper concentrations in tap water and possible effects on infant’s health-results of a study in lower Saxony, Germany. Environ Res 92:129–138

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Laboratory Open Fund of Hubei Provincial Key Laboratory of Mining Area Environmental Pollution Control and Remediation (2017015), and Cooperative Project of Hubei Environmental Remediation and Governance Technological Research Co., ltd (KY2018-180).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hang-Wei Hu.

Additional information

Responsible editor: Robert Duran

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 7544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, W., Zheng, J., Bao, J. et al. Characterization of the copper resistance mechanism and bioremediation potential of an Acinetobacter calcoaceticus strain isolated from copper mine sludge. Environ Sci Pollut Res 27, 7922–7933 (2020). https://doi.org/10.1007/s11356-019-07303-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-07303-3

Keywords

Navigation