Skip to main content
Log in

Adsorptive removal of antibiotics from water over natural and modified adsorbents

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Various adsorbents including agricultural waste–based adsorbents, nanomaterials and layered double hydroxides have been reviewed for removal of antibiotics from water due to their unique properties. The adsorption mechanism is governed mostly by the affinity of a pollutant to adsorbent materials. However, the main adsorption mechanisms defined in this study for removal of antibiotics are the electrostatic attraction, ππ interaction and hydrogen bonding. The study highlighted the contribution of modification in the adsorption capacity of antibiotics. Some of the most important adsorbents discussed in this review are graphene-based adsorbents, binary layered double hydroxides and magnetic nanoparticles as well as the antibiotics sulfamethoxazole, tetracycline and metronidazole. The key factors for the selection of the suitable materials are the structure, characteristics and other physicochemical parameters such as pH and temperature. However, the most crucial factor is the adsorption capacity. Some of the adsorption kinetics models and isotherms for antibiotic sorption are also highlighted in this study. In addition, the review summarizes the future prospects and recent challenges faced with the adsorption techniques for removal of antibiotics from wastewater. This review will help readers understand the current trend in the adsorptive removal of antibiotics from water.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahmed JM (2017) Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J Environ Manage 190:274–282

    CAS  Google Scholar 

  • Ahmed BM, Zhou LZ, Ngo HH, Wenshan GW (2015) Adsorptive removal of antibiotics from water and wastewater: progress and challenges. Sci. Total Environ. 532:112–126

    CAS  Google Scholar 

  • Ahsan M, Islam M, Hernandez C, Castro E, Katla KS, Kim H, Lin Y, Curry M, Gardea-Torresdey J, Noveron CJ (2018) Biomass conversion of saw dust to a functionalized carbonaceous materials for the removal of tetracycline, sulfamethoxazole and bisphenol A from water. J Environ Chem Eng 6:4329–4338

    CAS  Google Scholar 

  • Akhtar J, Amin ANS, Shahzad K (2015) A review on removal of pharmaceuticals from water by adsorption. Desalin Water Treat 57:12842–12860. https://doi.org/10.1080/19443994.2015.1051121

    Article  CAS  Google Scholar 

  • Albero B, Tadeo JL, Escario M, Miguel E, Pérez RA (2018) Persistence and availability of veterinary antibiotics in soil and soil-manure systems. Sci. Total Environ 643:1562–1570. https://doi.org/10.1016/j.scitotenv.2018.06.314

    Article  CAS  Google Scholar 

  • Alexander JA, Ahmad ZMA, Surajudeen A, Aliyu ENU, Omeiza AU (2018) Surface modification of low-cost bentonite adsorbents—a review. Part. Sci Technol.:1–12. https://doi.org/10.1080/02726351.2018.1438548

    Google Scholar 

  • Alidadi H, Dolatabadi M, Davoudi M, Barjasteh-Askari F, Farideh Jamali-Behnam F, Hosseinzadeh A (2018) Enhanced removal of tetracycline using modified sawdust: optimization, isotherm, kinetics, and regeneration studies. Process Saf Environ 117:51–60

    CAS  Google Scholar 

  • Ao W, Fu J, Mao X, Kang Q, Ran C, Liu Y, Zhang H, Gao Z, Li J, Liu G, Dai J (2018) Microwave assisted preparation of activated carbon from biomass: a review. Renew Sust Energy Rev 92:958–979

    CAS  Google Scholar 

  • Asere GT, Stevens VC, Laing DG (2019) Use of (modified) natural adsorbents for arsenic remediation: a review Sci. Total Environ 676:706–720

    CAS  Google Scholar 

  • Balarak D, Mostafapour KF, Akbari H, Joghtaei A (2017) Adsorption of amoxicillin antibiotic from pharmaceutical wastewater by activated carbon prepared from Azolla filiculoides. JPRI 18(3):1–13

    Google Scholar 

  • Basheer A A. (2018) New generation nano-adsorbents for the removal of emerging contaminants in water. Journal of Molecular Liquids Volume 261, 1 July 2018, Pages 583–593

    CAS  Google Scholar 

  • Belaib F, Azzedine M, Boubeker B, Abdeslam-Hassen M (2014) Experimental study of oxytetracycline retention by adsorption onto polyaniline coated peanut shells. International Journal of Hydrogen Energy 39:1511–1515

    CAS  Google Scholar 

  • Binh VN, Dang N, Anh TN, Ky XL, Thai KP (2018) Antibiotics in the aquatic environment of Vietnam: sources, concentrations, risk and control strategy. Chemosphere 197:438–450

    CAS  Google Scholar 

  • Boukhelkhal A, Benkortbi O, Hamadache M, Ghalem N, Hanini S, Amrane A (2016) Adsorptive removal of amoxicillin from wastewater using wheat grains: equilibrium, kinetic, thermodynamic studies and mass transfer. Desalin Water Treat 57:56

    Google Scholar 

  • Brodie BC (1859) Brodie On the atomic weight of graphite. Phil. Trans. Roy. Soc. Lond. 149:249–259

    Google Scholar 

  • Castensson S, Ekedahl A (2010) Pharmaceutical waste: the patient role. In: Kümmerer K (ed) Green and sustainable pharmacy. Springer, Berlin, pp 179–200

    Google Scholar 

  • Cheng XQ, Zhang C, Wang ZX, Shao L (2016) Tailoring nanofiltration membrane performance for highly-efficient antibiotics removal by mussel-inspired modification. J Membr Sci 499:326–334

    CAS  Google Scholar 

  • D’Inverno G, Carosi L, Romano G, Guerrini A (2018) Water pollution in wastewater treatment plants: an efficiency analysis with undesirable output. Eur J Oper Res 269(1):24–34

    Google Scholar 

  • Dendisová M, Jeništová A, Parchaňská-Kokaislová A, Matějka P, Prokopec V, Švecová M (2018) The use of infrared spectroscopic techniques to characterize nanomaterials and nanostructures: a review. Anal Chim Acta 1031:1–14

    Google Scholar 

  • Desta B M. (2013) Batch sorption experiments: Langmuir and Freundlich isotherm studies for the adsorption of textile metal ions onto teff straw (Eragrostis tef) agricultural waste. Journal of Thermodynamics 2013:1–6. https://doi.org/10.1155/2013/375830

    Google Scholar 

  • Dube C, Tandlich R, Wilhelmi B (2018) Adsorptive removal of ciprofloxacin and isoniazid from aqueous solution. Nova Biotechnol Chim 17(1):16–28

    CAS  Google Scholar 

  • El-taliawy H, Ekblad M, Nilsson F, Hagman M, Paxeus N, Jönsson K, Cimbritz M, la Cour JJ, Bester K (2017) Ozonation efficiency in removing organic micro pollutants from wastewater with respect to hydraulic loading rates and different wastewaters. Chem Eng J 325:310–321

    CAS  Google Scholar 

  • Ezzariai A, Hafidi M, Khadra A, Aemig Q, El Fels L, Barret M, Merlina G, Patureau D, Pinelli E (2018) Human and veterinary antibiotics during composting of sludge or manure: Global perspectives on persistence, degradation, and resistance genes. J Hazard Mater 359:465–481. https://doi.org/10.1016/j.jhazmat.2018.07.092

    Article  CAS  Google Scholar 

  • Fan H, Shi Q, Shen H, Chen X, Xie K (2016) Equilibrium, isotherm, kinetic and thermodynamic studies for removal of tetracycline antibiotics by adsorption onto hazelnut shell derived activated carbons from aqueous media. RSC Adv. 6:109983–109991

    CAS  Google Scholar 

  • Fatta-Kassinos D, Achilleos A, Nikolaou A, Meric S (2007) Analytical methods for tracing pharmaceutical residues in water and wastewater. TrAC Trends in Analytical Chemistry 26(6):515–533. https://doi.org/10.1016/j.trac.2007.02.001

    Article  CAS  Google Scholar 

  • Filippini M, Heimsch F, Masiero G (2014) Antibiotic consumption and the role of dispensing physicians. Regional Science and Urban Economics 49:242–251

    Google Scholar 

  • Fleming A (1929) On the antibacterial action of cultures of a Penicillium, with special reference to their use in the isolation of B. influenzae. Brit. J. Exp. Pathol. 10:226–236

    CAS  Google Scholar 

  • Fu H, Li X, Wang J, Lin P, Chen C, Zhang X, Suffet IH (2017) Activated carbon adsorption of quinolone antibiotics in water: performance, mechanism, and modeling. Journal of Environmental Sciences 56:145–152

    Google Scholar 

  • Gamal M, Mousa AH, El-Naas HM, Zacharia R, Judd S (2018) Bio-regeneration of activated carbon: a comprehensive review. Sep Purif Technol 197(31):345–359. https://doi.org/10.1016/j.seppur.2018.01.015

    Article  CAS  Google Scholar 

  • Gao Y, Li Y, Zhang L, Huang H, Hu J, Shah MS, Su X (2012) Adsorption and removal of tetracycline antibiotics from aqueous solution by graphene oxide. J Colloid and Interface Sci 368:540–546

    CAS  Google Scholar 

  • Ghadim EE, Manouchehri F, Soleimani G, Hosseini H, Kimiagar S et al (2013) Adsorption properties of tetracycline onto graphene oxide: equilibrium, kinetic and thermodynamic studies. PLoS One 8–11:e79254. https://doi.org/10.1371/journal.pone.0079254

    Article  CAS  Google Scholar 

  • Gracia-Lor E, Castiglioni S, Bade R, Been F, Castrignanò E, Covaci A, González-Mariño I, Hapeshi E, Kasprzyk-Hordern B, Kinyua J, Lai FY, Letzel T, Lopardo L, Meyer MR, O’Brien J, Ramin P, Rousis NI, Rydevik A, Ryu Y, Santos MM, Senta I, Thomaidis NS, Veloutsou S, Yang Z, Zuccato E (2017) Bijlsma L (2017) Measuring biomarkers in wastewater as a new source of epidemiological information: current state and future perspectives. Environ. Int. 99:131–150. https://doi.org/10.1016/J.ENVINT.2016.12.016

    Article  CAS  Google Scholar 

  • Grenn P, Ancona V, Caracciolo V (2018) Ecological effects of antibiotics on natural ecosystems: a review. Microchem J 136:25–39

    Google Scholar 

  • Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J. Am. Chem. Soc. 80(6):1339–1339

    CAS  Google Scholar 

  • Jagtap UB (2017) Antibiotics in the soil: sources, environmental issues, and bioremediation. In: Antibiotics and antibiotics resistance genes in soils. eds M.Z. Hashmi, V. Strezov, and A. Varma (Cham: Springer), 381–389.

  • Ji Y, Fan Y, Liu K, Kong D, Lu J (2015) Thermo activated persulfate oxidation of antibiotic sulfamethoxazole and structurally related compounds. Water Res 87:1–9

    CAS  Google Scholar 

  • Kim S, Park MC, Jang M, Son A, Her N, Yu M, Snyder S, Kim D, Yoon Y (2018) Aqueous removal of inorganic and organic contaminants by graphene-based nanoadsorbents: a review. Chemosphere 212:1104–1124

    CAS  Google Scholar 

  • Klimaszyk P, Rzymski P (2017). Water and aquatic fauna on drugs: what are the impacts of pharmaceutical pollution? International symposium on water in environment WINEC 2017: Water management and the environment: case studies. pp 255–278|

    Google Scholar 

  • Kong X, Liu Y, Pi J, Li W, Liao Q, Shang J (2017) Low-cost magnetic herbal biochar: characterization and application for antibiotic removal. Environ Sci Pollut Res 24:6679–6687

    CAS  Google Scholar 

  • Kurup L (2012) Evaluation of the adsorption capacity of alkali-treated waste materials for the adsorption of sulphamethoxazole. Water Sci Technol. 65(9):1531–1539. https://doi.org/10.2166/wst.2012.017

    Article  CAS  Google Scholar 

  • Largitte L, Pasquier R (2016) A review of the kinetics adsorption models and their application to the adsorption of lead by an activated carbon. Chem Eng Res Des 109:495–504

    CAS  Google Scholar 

  • Larsson JDG (2014) Antibiotics in the environment. Upsala Journal of Medical Sciences 119:108–112

    Google Scholar 

  • Lei C, Zhu X, Zhu B, Jiang C, Le Y, Yu J (2017) Superb adsorption capacity of hierarchical calcined Ni/Mg/Al layered double hydroxides for Congo red and Cr(VI) ions. J Hazard Mater 321:801–811

    CAS  Google Scholar 

  • Leite BA, Saucier C, Lima CE, Reis SG, Umpierres SC, Mello LB, Shirmardi M, Dias LPS, Sampaio HC (2018) Activated carbons from avocado seed: optimisation and application for removal of several emerging organic compounds. Environ Sci Pollut Res. 25(8):7647–7661. https://doi.org/10.1007/s11356-017-1105-9

    Article  CAS  Google Scholar 

  • Li H, Hu J, Meng Y, Su J, Wang X (2017) An investigation into the rapid removal of tetracycline using multilayered graphene-phase biochar derived from waste chicken feather. Sci Total Environ 603:39-48

    CAS  Google Scholar 

  • Li J, Zhang N, Ng HDL (2015) Synthesis of 3D hierarchical structure of γ-AlO(OH)/MgAl-LDH/C and its performance in organic dyes and antibiotics adsorption. J. Mater. Chem. A 3:21106–21115. https://doi.org/10.1039/C5TA04497A

    Article  CAS  Google Scholar 

  • Li S, Zhang Y, You Q, Wang Q, Liao G, Wang D (2018) Highly efficient removal of antibiotics and dyes from water by the modified carbon nanofibers composites with abundant mesoporous structure. Colloids Surf A 558:392–401

    CAS  Google Scholar 

  • Li N, Zhou L, Jin X, Owens G, Chen Z (2019) Simultaneous removal of tetracycline and oxytetracycline antibiotics from wastewater using a ZIF-8 metal organic-framework. J Hazard Mater 366:563–572

    CAS  Google Scholar 

  • Loebenstein VW (1962) Batch Adsorption from Solution. J R Natl Stand Sec A: Physics and Chemistry 66A:6–186

    Google Scholar 

  • Luo Y, Bai B, Wang H, Suo Y, Yao Y (2017) Efficient absorption of antibiotic from aqueous solutions over MnO2@SA/Mn beads and their in situ regeneration by heterogeneous Fenton-like reaction. J Nanomaterials 2017:13

    Google Scholar 

  • Mansouri H, Carmona JR, Alicia GA, Souad SS, Ouederni A, Ania OC (2015) Competitive adsorption of ibuprofen and amoxicillin mixtures from aqueous solution on activated carbons. J Colloid and Interface Sci 449:252–260

    CAS  Google Scholar 

  • McQuillan VR, Stevens WG, Mumford AK (2018) The electrochemical regeneration of granular activated carbons: a review. J Hazard Mater 355:34–49. https://doi.org/10.1016/j.jhazmat.2018.04.079

    Article  CAS  Google Scholar 

  • Miao J, Wang F, Chen Y, Zhu Y, Zhou Y, Zhang S (2019) The adsorption performance of tetracyclines on magnetic graphene oxide: A novel antibiotics absorbent. Applied Surf Sci. 475: 549–558. https://doi.org/10.1016/j.apsusc.2019.01.036

    CAS  Google Scholar 

  • Mo J, Yanga Q, Zhang N, Zhang W, Zheng Y, Zhang Z (2018) A review on agro-industrial waste (AIW) derived adsorbents for water and wastewater treatment. J Environ Manage 227:395–405

    CAS  Google Scholar 

  • Mourid EH, Lakraimi M, Benaziz L, Elkhattabi EH, Ahmed LA (2019) Wastewater treatment test by removal of the sulfamethoxazole antibiotic by a calcined layered double hydroxide. Appl. Clay Sci 168:87–95

    CAS  Google Scholar 

  • Moussavi G, Alahabadi A, Yaghmaeian K, Eskandari M (2013) Preparation, characterization and adsorption potential of the NH4Cl-induced activated carbon for the removal of amoxicillin antibiotic from water. Chem Eng J 217:119–128

    CAS  Google Scholar 

  • Nabiyouni G, Sharifi S, Ghanbari D, Salavati-Niasari M (2014) A simple precipitation method for synthesis CoFe2O4 nanoparticles. JNS 4:317–323

    Google Scholar 

  • Nariyan E, Aghababaei A, Sillanpää M (2017) Removal of pharmaceutical from water with an electrocoagulation process: effect of various parameters and studies of isotherm and kinetic. Sep Purif Technol 188:266–281

    CAS  Google Scholar 

  • Ni ZH, Xia SI, Wang LG, Xing FF, Pan GX (2007) Treatment of methyl orange by calcined layered double hydroxides in aqueous solution: adsorption property and kinetic studies. J. Colloid Inter. Sci. 316:284–291

    CAS  Google Scholar 

  • Panplado K, Subsadsana M, Srijaranai S, Sansuk S (2019) Rapid removal and efficient recovery of tetracycline antibiotics in aqueous solution using layered double hydroxide components in an in situ-adsorption process. Crystals 9(7):342. https://doi.org/10.3390/cryst9070342

    Article  CAS  Google Scholar 

  • Poynton HC, Robinson WE (2018) Contaminants of emerging concern, with an emphasis on nanomaterials and pharmaceuticals. Green Chemistry:291–315. https://doi.org/10.1016/b978-0-12-809270-5.00012-1

    Google Scholar 

  • Priya SS, Radha VK (2015) A review on the adsorption studies of tetracycline onto various types of adsorbents. Chemical Engineering Communications 204(8):821–839. https://doi.org/10.1080/00986445.2015.1065820

    Article  CAS  Google Scholar 

  • Putra KE, Pranowo R, Sunarso J, Indraswati N, Ismadji S (2009) Performance of activated carbon and bentonite for adsorption of amoxicillin from wastewater: mechanisms, isotherms and kinetics. Water Res. 43(2419):2430

    Google Scholar 

  • Qiao M, Ying G, Singerd CA, Zhua Y (2018) Review of antibiotic resistance in China and its environment. Environ Int 110:160–172

    CAS  Google Scholar 

  • Qin Q, Wu X, Chen L, Jiang Z, Xu Y (2018) Simultaneous removal of tetracycline and Cu(II) by adsorption and coadsorption using oxidized activated carbon. RSC Advances 8(4):1744–1752. https://doi.org/10.1039/c7ra12402c

    Article  CAS  Google Scholar 

  • Ravikumar GVK, Vathaluru Sudakaran S, Ravichandran K, Pulimi M, Natarajan C, Mukherjee A (2019) Green synthesis of NiFe nano particles using Punica granatum peel extract for tetracycline removal. J. Clean Prod. 210:767–776

    CAS  Google Scholar 

  • Renita AA, Senthil Kumar SP, Srinivas S, Priyadharshini S, Karthika M (2017) A review on analytical methods and treatment techniques of pharmaceutical wastewater. Desalin and Water Treat 87:160–178. https://doi.org/10.5004/dwt.2017.21311

    Article  CAS  Google Scholar 

  • Sadegh H, Ali MGA, Gupta KV, Makhlouf AH, Shahryari-ghoshekandi R, Nadagouda NM, Mika SM, Megiel E (2017) The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J Nanostruct Chem 7:1–14

    CAS  Google Scholar 

  • Santhosh C, Velmurugan V, Jacob G, KwanJeong S, Grace NA, Bhatnagar A (2016) Role of nanomaterials in water treatment applications: a review. Chem Eng J 306:1116–1137

    CAS  Google Scholar 

  • Saucier C, Karthickeyan P, Ranjithkumar V, Lima CE, Reis SD, de Brum SAI (2016) Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon. Environ Sci Pollut Res 24(6):5918–5932. https://doi.org/10.1007/s11356-016-8304-7

    Article  CAS  Google Scholar 

  • Sayen S, Ortenbach-López M, Guillon E (2018) Sorptive removal of enrofloxacin antibiotic from aqueous solution using a lignocellulosic substrate from wheat bran. J Environ Chem Eng 6(5):5820–5829. https://doi.org/10.1016/j.jece.2018.08.012

    Article  CAS  Google Scholar 

  • Sellaoui L, Lima CE, Dotto LG, Lamine BA (2017) Adsorption of amoxicillin and paracetamol on modified activated carbons: equilibrium and positional entropy studies. J Mol Liquids 234:375–381

    CAS  Google Scholar 

  • Sepehr NM, Al-Musawi JT, Ghahramani E, Kazemian H, Zarrabi M (2017) Adsorption performance of magnesium/aluminum layered double hydroxide nanoparticles for metronidazole from aqueous solution. Arab J Chem. 10:611–623

    CAS  Google Scholar 

  • Serna-Galvis AE, Montoya-Rodríguez D, Isaza-Pineda L, Ibáñez M, Hernández F, Moncayo-Lasso A, Torres-Palma AT (2019) Sonochemical degradation of antibiotics from representative classes—considerations on structural effects, initial transformation products, antimicrobial activity and matrix. Ultrasonics Sonochemistry 50:157–165

    CAS  Google Scholar 

  • Shi H, Cheng X, Wu Q, Mu R, Ma Y (2012) Assessment and removal of emerging water contaminants. J Environ Anal Toxicol S2:003. https://doi.org/10.4172/2161-0525.S2-003

    Article  Google Scholar 

  • Shi X, Leong YK, Ng YH (2017) Anaerobic treatment of pharmaceutical wastewater: a critical review. Bioresource Technol 245:1238–1244

    CAS  Google Scholar 

  • Silva JG, Morante L, Demeke T, Baah-Twum J, Navarro EA (2018) Preparation and characterization of chemically-modified biomaterials and their application as adsorbents of penicillin. Clean Technol. 1:114–124. https://doi.org/10.3390/cleantechnol1010008

    Article  Google Scholar 

  • Sophia AC, Lima EC (2018) Removal of emerging contaminants from the environment by adsorption. Ecotoxicol Environ Saf. 150:1-17. https://doi.org/10.1016/j.ecoenv.2017.12.026

    CAS  Google Scholar 

  • Staudenmaier L (1898) StaudenmaierVerfahren zur darstellung der graphitsaure Ber Deutsche. Chem. Ges 31:1481–1487

    CAS  Google Scholar 

  • Szymańska U, Wiergowski M, Sołtyszewski I, Kuzemko J, Wiergowska G, Woźniak MK (2019) Presence of antibiotics in the aquatic environment in Europe and their analytical monitoring: recent trends and perspectives. Microchemical Journal 147:729–740. https://doi.org/10.1016/j.microc.2019.04.003

    Article  CAS  Google Scholar 

  • Tan X, Liu S, Liu Y, Gu Y, Zeng G, Cai X, Yan Z, Yang C, Hu X, Chen B (2016) One-pot synthesis of carbon supported calcined-Mg/Al layered double hydroxides for antibiotic removal by slow pyrolysis of biomass waste. Scientific Reports 6:39691

    Google Scholar 

  • Tiwari B, Sellamuthu B, Ouarda Y, Drogui P, Tyagi RD, Buelna G (2017) Review on fate and mechanism of removal of pharmaceutical pollutants from wastewater using biological approach. Bioresour. Technol. 224:1–12

    CAS  Google Scholar 

  • Tonucci CM, Gurgel VL, de Aquino FS (2015) Activated carbons from agricultural byproducts (pine tree and coconut shell), coal, and carbon nanotubes as adsorbents for removal of sulfamethoxazole from spiked aqueous solutions: kinetic and thermodynamic studies. Ind Crop Prod 74:111–121

    CAS  Google Scholar 

  • Tzeng TW, Liu YT, Deng Y, Hsieh YC, Tan CC, Wang SL, Huang ST, Tzou YM (2016) Removal of sulfamethazine antibiotics using cow manure-based carbon adsorbents. Intl Journal of Environ Sci Te 13: 973–984. https://doi.org/10.1007/s13762-015-0929-4

    CAS  Google Scholar 

  • Van Boeckel V, Laxminarayan R (2017) Correction to global antibiotic consumption data. Lancet Infect Dis. 17:476–477

    Google Scholar 

  • Van Boeckel T, Gandra S, Ashok A, Caudron Q, Grenfell TB, Levin AS, Laxminarayan R (2014) Global antibiotic consumption 2000 to 2010: an analysis of national pharmaceutical sales data. Lancet Infect Dis 14(8:742–750

    Google Scholar 

  • Wang S, Wang H (2015) Adsorption behavior of antibiotic in soil environment: a critical review. Front. Environ. Sci. Eng 9(4):565–574. https://doi.org/10.1007/s11783-015-0801-2

    Article  CAS  Google Scholar 

  • Wang Y, Lu J, Wu J, Liu Q, Zhang H, Jin S (2015) Adsorptive removal of fluoroquinolone antibiotics using bamboo biochar. Sustainability 7:12947–12957. https://doi.org/10.3390/su70912947

    Article  CAS  Google Scholar 

  • Wang D, Xu H, Yang S, Wang W, Wang Y (2017) Adsorption property and mechanism of oxytetracycline onto willow residues. Int. J. Environ. Res. Public Health 15:8. https://doi.org/10.3390/ijerph15010008

    Google Scholar 

  • Wang T, Ai S, Zhou Y, Luo Z, Dai C, Yang Y, Zhang J, Huang H, Luo S, Luo L (2018) Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalized magnetic nanoparticles. J Environ Chem Eng 6(5):6468–6478

    CAS  Google Scholar 

  • Wu G, Ma J, Li S, Guan J, Jiang B, Wang L, Li J, Wang X, Chen L (2018) Magnetic copper-based metal organic framework as an effective and recyclable adsorbent for removal of two fluoroquinolone antibiotics from aqueous solutions. J Colloid and Interface Sci 528:360–371

    CAS  Google Scholar 

  • Xia S, Zhang L, Zhou X, Pan G, Ni Z (2015) The photocatalytic property for water splitting and the structural stability of CuMgM layered double hydroxides (M=Al, Cr, Fe, Ce). Appl. Clay Sci 114: 577–585

    CAS  Google Scholar 

  • Xiang Y, Xu Z, Wei Y, Zhou Y, Yang X, Yang Y, Zhou Z (2019) Carbon-based materials as adsorbent for antibiotics removal: mechanisms and influencing factors. J Environ Manage 237:128–138. https://doi.org/10.1016/j.jenvman.2019.02.068

    Article  CAS  Google Scholar 

  • Xu Z, Fan J, Zheng S, Ma F, Yin D (2009) On the adsorption of tetracycline by calcined magnesium-aluminum hydrotalcites. J Environ Qual 38(3):1302–1310. https://doi.org/10.2134/jeq2008.0246

    Article  CAS  Google Scholar 

  • Yan W, Xiao Y, Yan W, Ding R, Wang S, Zhao F (2018) The effect of bioelectrochemical systems on antibiotics removal and antibiotic resistance genes: a review. Chem Eng J 358:1421–1437. https://doi.org/10.1016/j.cej.2018.10.128

    Article  CAS  Google Scholar 

  • Yang Y, Song W, Lin H, Wang W, Du L, Xing W (2018) Antibiotics and antibiotic resistance genes in global lakes: a review and meta-analysis. Environ Int 116:60–73

    CAS  Google Scholar 

  • Yoon US, Mahanty B, Kim GC (2017) Adsorptive removal of carbamazepine and diatrizoate in iron oxide nanoparticles amended sand column mimicing managed aquifer recharge. Water 9:250. https://doi.org/10.3390/w90402

    Article  Google Scholar 

  • Yu F, Ma J, Bi D (2014) Enhanced adsorptive removal of selected pharmaceutical antibiotics from aqueous solution by activated graphene. Environ Sci Pollut Res. 22(6):4715–4724. https://doi.org/10.1007/s11356-014-3723-9

    Article  CAS  Google Scholar 

  • Yu F, Li Y, Han S, Ma J (2016) Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere 153:385–365

    Google Scholar 

  • Yu B, Bai Y, Ming Z, Yang H, Chen L, Hu X, Feng S, Yang S (2017) Adsorption behaviors of tetracycline on magnetic graphene oxide sponge. Mater Chem Phys 198:283–290

    CAS  Google Scholar 

  • Zha XS, Zhou Y, Jin X, Chen Z (2013) The removal of amoxicillin from wastewater using organobentonite. J Environ Manage 129:569–576

    CAS  Google Scholar 

  • Zhang Hiew YB, Lee YL, Lee JX, Gan S, Thangalazhy-Gopakumar S, Lim SS, Pan G, Yang CT (2018) Adsorptive removal of diclofenac by graphene oxide: optimization, equilibrium, kinetic and thermodynamic studies. J Taiwan Inst Chem Eng 000:1–13

    Google Scholar 

  • Zhang Y, Jiang F, Huang D, Hou S, Wang H, Wang M, Chi Y, Zhao Z (2018) A facile route to magnetic mesoporous core–shell structured silicas containing covalently bound cyclodextrins for the removal of the antibiotic doxycycline from water. RSC Adv 8:31348–31357

    CAS  Google Scholar 

  • Zhang J, Khan AM, Xia M, Abdo MA, Lei W, Liao C, Wang F (2019) Facile hydrothermal synthesis of magnetic adsorbent CoFe2O4/MMT to eliminate antibiotics in aqueous phase: tetracycline and ciprofloxacin. Environ Sci Pollut Res. 26(1):215–226. https://doi.org/10.1007/s11356-018-3452-6

    Article  CAS  Google Scholar 

  • Zhou A, Zhang Y, Li R, Su X, Zhang L (2014) Adsorptive removal of sulfa antibiotics from water using spent mushroom substrate, an agricultural waste. Desalination and Water Treatment 57:1. https://doi.org/10.1080/19443994.2014.979239

    Article  CAS  Google Scholar 

  • Zhou K, Xie X, Chang C (2017) Photocatalytic degradation of tetracycline by Ti-MCM-41 prepared at room temperature and biotoxicity of degradation products. Appl Surface Sci 416:248–258

    CAS  Google Scholar 

  • Zubair M, Daud M, McKayd G, Shehzad F, Al-Harthib AM (2017) Recent progress in layered double hydroxides (LDH)-containing hybrids as adsorbents for water remediation. Appl Clay Sci 143:279–292

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed A. Barakat.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eniola, J.O., Kumar, R. & Barakat, M.A. Adsorptive removal of antibiotics from water over natural and modified adsorbents. Environ Sci Pollut Res 26, 34775–34788 (2019). https://doi.org/10.1007/s11356-019-06641-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06641-6

Keywords

Navigation