Skip to main content
Log in

Characteristics of indoor and outdoor fine particles in heating period at urban, suburban, and rural sites in Harbin, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Concurrent indoor–outdoor fine particulate matter (PM2.5) measurements were conducted at urban, suburban, and rural sites in Harbin, a megacity in the northeast of China. Chemical constituents of indoor–outdoor PM2.5 were determined. Infiltration factors (FINF) of all sites were calculated according to the indoor to outdoor (I/O) ratios of PM2.5 based on the regression analysis. Linear discriminant analysis (LDA) is applied to determine the indoor–outdoor relationship. Secondary organic carbon (SOC) was calculated on the basis of organic carbon to elemental carbon (OC/EC) ratios. The mean concentrations of indoor and outdoor PM2.5 were 166.4 ± 32.5 μg/m3 and 228.4 ± 83.7 μg/m3, respectively, during the heating period. OC/EC and potassium ion to elemental carbon (K+/EC) ratios verified that biomass was an important source in Harbin especially for rural sites. The nitrate to sulfate (NO3/SO42−) ratio indicates the higher contribution of traffic emissions in urban sites. Cr was the only species that exceeded the guidelines of WHO 2002, which was mainly emitted from coal and oil combustion. SOC/OC and NO3/SO42− ratios, and ion-balanced acidity (the ratio of cation to anion, R+/−) showed a large urban–rural and indoor–outdoor difference. The highest SOC/OC ratio was found at urban sites, up to 38.3% for indoors. SOC/OC ratios and R+/− values of indoor environments were higher, which is attributed to the conducive condition of forming the secondary pollutants during the heating period. The results of LDA indicated that the distributions of the chemical components of PM2.5 at three sites were statistically dissimilar.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams P, Seinfeld JH, Koch D (1999) Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model. J Geophys Res 104:13791–13823

    Article  CAS  Google Scholar 

  • Alves C, Nunes T, Silva J, Duarte M (2013) Comfort parameters and particulate matter (PM10 and PM2.5) in school classrooms and outdoor air. Aerosol Air Qual Res 13:1521–1535

    Article  CAS  Google Scholar 

  • Bajo S (1991) Dissolving matrices. CRC, Preconcentration techniques for trace elements

    Google Scholar 

  • Barraza F, Jorquera H, Valdivia G, Montoya LD (2014) Indoor PM2.5 in Santiago, Chile, spring 2012: source apportionment and outdoor contributions. Atmos Environ 94:692–700

    Article  CAS  Google Scholar 

  • Cao JJ, Huang H, Lee SC, Chow JC, Zou CW, Ho KF, Watson JG (2012) Indoor/outdoor relationships for organic and elemental carbon in PM2.5 at residential homes in Guangzhou, China. Aerosol Air Qual Res 12:902–910

    Article  CAS  Google Scholar 

  • Castro LM, Pio CA, Harrison RM, Smith DJT (1999) Carbonaceous aerosol in urban and rural European atmospheres: estimation of secondary organic carbon concentrations. Atmos Environ 33:2771–2781

    Article  CAS  Google Scholar 

  • Cattaneo A, Peruzzo C, Garramone G, Urso P, Ruggeri R, Carrer P, Cavallo DM (2011) Airborne particulate matter and gaseous air pollutants in residential structures in Lodi province, Italy. Indoor Air 21:489–500

    Article  CAS  Google Scholar 

  • Cesari D, Donateo A, Conte M, Merico E, Giangreco A, Giangreco F, Contini D (2016) An inter-comparison of PM2.5 at urban and urban background sites: chemical characterization and source apportionment. Atmos Res 174:106–119

    Article  CAS  Google Scholar 

  • Chow JC, Watson JG, Jerome R, Xiaoliang W, L-W Antony C, Trimble DL, Kohl SD, Tropp RJ, Fung KK (2011) Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon. Anal Bioanal Chem 401:3141

    Article  CAS  Google Scholar 

  • Duan FK, Liu XD, Yu T, Cachier H (2004) Identification and estimate of biomass burning contribution to the urban aerosol organic carbon concentrations in Beijing. Atmos Environ 38:1275–1282

    Article  CAS  Google Scholar 

  • Gao XM, Yang LX, Cheng SH, Gao R, Zhou Y, Xue LK, Shou YP, Wang J, Wang XF, Nie W, Xu PJ, Wang WX (2011) Semi-continuous measurement of water-soluble ions in PM2.5 in Jinan, China: temporal variations and source apportionments. Atmos Environ 45:6048–6056

    Article  CAS  Google Scholar 

  • Han Y, Qi M, Chen Y, Shen H, Liu J, Huang Y, Chen H, Liu W, Wang X, Liu J, Xing B, Tao S (2015a) Influences of ambient air PM2.5 concentration and meteorological condition on the indoor PM2.5 concentrations in a residential apartment in Beijing using a new approach. Environ Pollut 205:307–314

    Article  CAS  Google Scholar 

  • Han Y, Qi M, Chen YL, Shen HZ, Liu J, Huang Y, Chen H, Liu WX, Wang XL, Liu JF, Xing BS, Tao S (2015b) Influences of ambient air PM2.5 concentration and meteorological condition on the indoor PM2.5 concentrations in a residential apartment in Beijing using a new approach. Environ Pollut 205:307–314

    Article  CAS  Google Scholar 

  • Hanninen O, Hoek G, Mallone S, Chellini E, Katsouyanni K, Gariazzo C, Cattani G, Marconi A, Molnar P, Bellander T, Jantunen M (2011) Seasonal patterns of outdoor PM infiltration into indoor environments: review and meta-analysis of available studies from different climatological zones in Europe. Air Qual Atmos Hlth 4:221–233

    Article  CAS  Google Scholar 

  • Hänninen OO, Lebret E, Ilacqua V, Katsouyanni K, Künzli N, Srám RJ, Jantunen M (2004) Infiltration of ambient PM2.5 and levels of indoor generated non-ETS PM2.5 in residences of four European cities. Atmos Environ 38:6411–6423

    Article  CAS  Google Scholar 

  • Hasheminassab S, Daher N, Shafer MM, Schauer JJ, Delfino RJ, Sioutas C (2014) Chemical characterization and source apportionment of indoor and outdoor fine particulate matter (PM2.5) in retirement communities of the Los Angeles Basin. Sci Total Environ 490:528–537

    Article  CAS  Google Scholar 

  • He K, Zhao Q, Ma Y, Duan F, Yang F, Shi Z, Chen G (2012) Spatial and seasonal variability of PM<sub>2.5</sub> acidity at two Chinese megacities: insights into the formation of secondary inorganic aerosols. Atmos Chem Phys 12:1377–1395

    Article  CAS  Google Scholar 

  • Hoek G et al (2008) Indoor–outdoor relationships of particle number and mass in four European cities. Atmos Environ 42:156–169

    Article  CAS  Google Scholar 

  • Hong L, Liu G, Zhou L, Li J, Xu H, Wu D (2017) Emission of organic carbon, elemental carbon and water-soluble ions from crop straw burning under flaming and smoldering conditions. Particuology 31:181–190

    Article  CAS  Google Scholar 

  • Huang H, Lee SC, Cao JJ, Zou CW, Chen XG, Fan SJ (2007) Characteristics of indoor/outdoor PM2.5 and elemental components in generic urban, roadside and industrial plant areas of Guangzhou City, China. J Environ Sci 19:35–43

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (2014) IARC monographs on the evaluation of carcinogenic risks to humans, volume 109: Outdoor Air Pollution. World Health Organization / International Agency for Research on Cancer.

  • Ji WJ, Zhao B (2015) Contribution of outdoor-originating particles, indoor-emitted particles and indoor secondary organic aerosol (SOA) to residential indoor PM2.5 concentration: a model-based estimation. Build Environ 90:196–205

    Article  Google Scholar 

  • Johansen A, Siefert R, Hoffmann M (1999) Chemical characterization of ambient aerosol collected during the northeast monsoon season over the Arabian Sea: anions and cations. J Geophys Res-Atmos 104:26325–26347

    Article  CAS  Google Scholar 

  • Koenig JQ, Mar TF, Allen RW, Karen J, Thomas L, Sullivan JH, Trenga CA, Timothy L, Liu LJS (2005) Pulmonary effects of indoor- and outdoor-generated particles in children with asthma. Environ Health Perspect 113:499–503

    Article  CAS  Google Scholar 

  • Li CL, Fu JM, Sheng GY, Bi XH, Hao YM, Wang XM, Mai BX (2005) Vertical distribution of PAHs in the indoor and outdoor PM2.5 in Guangzhou, China. Build Environ 40:329–341

    Article  Google Scholar 

  • Li X, Wang L, Wang Y, Wen T, Yang Y, Zhao Y, Wang Y (2012) Chemical composition and size distribution of airborne particulate matters in Beijing during the 2008 Olympics. Atmos Environ 50:278–286

    Article  CAS  Google Scholar 

  • Li Y, Ma Z, Zheng C, Shang Y (2015) Ambient temperature enhanced acute cardiovascular-respiratory mortality effects of PM 2.5 in Beijing, China. Int J Biometeorol 59:1761–1770

    Article  Google Scholar 

  • Lin P, Hu M, Deng Z, Slanina J, Han S, Kondo Y, Takegawa N, Miyazaki Y, Zhao Y, Sugimoto N (2009): Seasonal and diurnal variations of organic carbon in PM2.5 in Beijing and the estimation of secondary organic carbon. J Geophys Res-Atmos 114

  • Liu BS, Song N, Dai QL, Mei RB, Sui BH, Bi XH, Feng YC (2016) Chemical composition and source apportionment of ambient PM2.5 during the non-heating period in Taian, China. Atmos Res 170:23–33

    Article  CAS  Google Scholar 

  • Liu Y, Chen R, Shen X, Mao X (2004) Wintertime indoor air levels of PM10, PM2.5 and PM1 at public places and their contributions to TSP. Environ Int 30:189–197

    Article  CAS  Google Scholar 

  • Louie PKK, Chow JC, Chen LWA, Watson JG, Leung G, Sin DWM (2005) PM2.5 chemical composition in Hong Kong: urban and regional variations. Sci Total Environ 338:267–281

    Article  CAS  Google Scholar 

  • Masiol M, Squizzato S, Rampazzo G, Pavoni B (2014) Source apportionment of PM2.5 at multiple sites in Venice (Italy): spatial variability and the role of weather. Atmos Environ 98:78–88

    Article  CAS  Google Scholar 

  • Mcgill G, Oyedele LO, Mcallister K (2015) Case study investigation of indoor air quality in mechanically ventilated and naturally ventilated UK social housing. Int J Sustain Built Environ 4:58–77

    Article  Google Scholar 

  • Minguillon MC, Schembari A, Triguero-Mas M, de Nazelle A, Dadvand P, Figueras F, Salvado JA, Grimalt JO, Nieuwenhuijsen M, Querol X (2012) Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain. Atmos Environ 59:426–436

    Article  CAS  Google Scholar 

  • Mohammed MOA, Song WW, Ma WL, Li WL, Ambuchi JJ, Thabit M, Li YF (2015) Trends in indoor-outdoor PM2.5 research: a systematic review of studies conducted during the last decade (2003–2013). Atmo Pollut Res 6:893–903

    Article  CAS  Google Scholar 

  • Mohammed MOA, Song WW, Ma YL, Liu LY, Ma WL, Li WL, Li YF, Wang FY, Qi MY, Lv N, Wang DZ, Khan AU (2016) Distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air in cold zone. Chemosphere 155:70–85

    Article  CAS  Google Scholar 

  • Molnar P, Johannesson S, Quass U (2014) Source apportionment of PM2.5 using positive matrix factorization (PMF) and PMF with factor selection. Aerosol Air Qual Res 14:725–U711

    Article  Google Scholar 

  • Olson DA, Turlington J, Duvall RV, Vicdow SR, Stevens CD, Williams R (2008) Indoor and outdoor concentrations of organic and inorganic molecular markers: source apportionment of PM2.5 using low-volume samples. Atmos Environ 42:1742–1751

    Article  CAS  Google Scholar 

  • Park S-S, Sim SY, Bae M-S, Schauer JJ (2013) Size distribution of water-soluble components in particulate matter emitted from biomass burning. Atmos Environ 73:62–72

    Article  CAS  Google Scholar 

  • Pope CA, Turner MC, Burnett RT, Michael J, Gapstur SM, Ryan WD, Daniel K, Brook RD (2015) Relationships between fine particulate air pollution, cardiometabolic disorders, and cardiovascular mortality. Circ Res 116:108

    Article  CAS  Google Scholar 

  • Popovicheva O, Kistler M, Kireeva E, Persiantseva N, Timofeev M, Kopeikin V, Kasper-Giebl A (2014) Physicochemical characterization of smoke aerosol during large-scale wildfires: extreme event of August 2010 in Moscow. Atmos Environ 96:405–414

    Article  CAS  Google Scholar 

  • Qi M, Zhu X, Du W, Chen YL, Chen YC, Huang TB, Pan XL, Zhong QR, Sun X, Zeng EY, Xing BS, Tao S (2017) Exposure and health impact evaluation based on simultaneous measurement of indoor and ambient PM2.5 in Haidian, Beijing. Environ Pollut 220:704–712

    Article  CAS  Google Scholar 

  • Qiu XH, Duan L, Gao J, Wang SL, Chai FH, Hu J, Zhang JQ, Yun YR (2016) Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China. J Environ Sci 40:75–83

    Article  Google Scholar 

  • Steinle S, Reis S, Sabel CE, Semple S, Twigg MM, Braban CF, Leeson SR, Heal MR, Harrison D, Lin C, Wu H (2015) Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments. Sci Total Environ 508:383–394

    Article  CAS  Google Scholar 

  • Strader R, Lurmann F, Pandis SN (1999) Evaluation of secondary organic aerosol formation in winter. Atmos Environ 33:4849–4863

    Article  CAS  Google Scholar 

  • Tao J, Gao J, Zhang L, Zhang R, Che H, Zhang Z, Lin Z, Jing J, Cao J, Hsu SC (2014) PM2.5 pollution in a megacity of southwest China: source apportionment and implication. Atmos Chem Phys 14:8679–8699

    Article  CAS  Google Scholar 

  • Tao J, Zhang LM, Zhang RJ, Wu YF, Zhang ZS, Zhang XL, Tang YX, Cao JJ, Zhang YH (2016) Uncertainty assessment of source attribution of PM2.5 and its water-soluble organic carbon content using different biomass burning tracers in positive matrix factorization analysis - a case study in Beijing, China. Sci Total Environ 543:326–335

    Article  CAS  Google Scholar 

  • Tao J, Zhang L, Cao J, Zhong L, Chen D, Yang Y, Chen D, Chen L, Zhang Z, Wu Y (2017) Source apportionment of PM 2.5 at urban and suburban areas of the Pearl River Delta region, South China - with emphasis on ship emissions. Sci Total Environ 574:1559–1570

    Article  CAS  Google Scholar 

  • Tobías GA, Sunyer DJ, Castellsagué PJ, Sáez ZM, Antó Boqué JM (1998) Impact of air pollution on the mortality and emergencies of chronic obstructive pulmonary disease and asthma in Barcelona. Gac Sanit 12:223–230

    Article  Google Scholar 

  • Wang F, Meng D, Li XW, Tan JJ (2016a) Indoor-outdoor relationships of PM2.5 in four residential dwellings in winter in the Yangtze River Delta, China. Environ Pollut 215:280–289

    Article  CAS  Google Scholar 

  • Wang Q, Liu M, Yu YP, Li Y (2016b) Characterization and source apportionment of PM2.5-bound polycyclic aromatic hydrocarbons from Shanghai city, China. Environ Pollut 218:118–128

    Article  CAS  Google Scholar 

  • Watson JG, Chow JC, Houck JE (2001) PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995. Chemosphere 43:1141–1151

    Article  CAS  Google Scholar 

  • Weschler CJ, Shields HC (1997) Potential reactions among indoor pollutants. Atmos Environ 31:3487–3495

    Article  Google Scholar 

  • Wheeler AJ, Gibson MD, MacNeill M, Ward TJ, Wallace LA, Kuchta J, Seaboyer M, Dabek-Zlotorzynska E, Guernsey JR, Stieb DM (2014) Impacts of air cleaners on indoor air quality in residences impacted by wood smoke. Environ Sci Technol 48:12157–12163

    Article  CAS  Google Scholar 

  • Yao XH, Chan CK, Fang M, Cadle S, Chan T, Mulawa P, He KB, Ye BM (2002) The water-soluble ionic composition of PM2.5 in Shanghai and Beijing, China. Atmos Environ 36:4223–4234

    Article  CAS  Google Scholar 

  • Zhang N, Han B, He F, Xu J, Niu C, Zhou J, Kong S, Bai Z, Xu H (2015) Characterization, health risk of heavy metals, and source apportionment of atmospheric PM2.5 to children in summer and winter: an exposure panel study in Tianjin, China. Air Qual Atmos Health 8:347–357

    Article  CAS  Google Scholar 

  • Zhang R, Jing J, Tao J, Hsu SC, Wang G, Cao J, Lee CSL, Zhu L, Chen Z, Zhao Y, Shen Z (2013) Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective. Atmos Chem Phys 13:7053–7074

    Article  CAS  Google Scholar 

  • Zhang XY, Cao JJ, Li LM, Arimoto R, Cheng Y, Huebert B, Wang D (2002) Characterization of atmospheric aerosol over XiAn in the south margin of the Loess Plateau, China. Atmos Environ 36:4189–4199

    Article  CAS  Google Scholar 

  • Zhou BT, Shen HZ, Huang Y, Li W, Chen H, Zhang YY, Su S, Chen YC, Lin N, Zhuo SJ, Zhong QR, Liu JF, Li BG, Tao S (2015) Daily variations of size-segregated ambient particulate matter in Beijing. Environ Pollut 197:36–42

    Article  CAS  Google Scholar 

  • Zhu CS, Cao JJ, Shen ZX, Liu SX, Zhang T, Zhao ZZ, Xu HM, Zhang EK (2012) Indoor and outdoor chemical components of PM2.5 in the rural areas of Northwestern China. Aerosol Air Qual Res 12:1157–1165

    Article  CAS  Google Scholar 

  • Zhu YH, Yang LX, Meng CP, Yuan Q, Yan C, Dong C, Sui X, Yao L, Yang F, Lu YL, Wang WX (2015) Indoor/outdoor relationships and diurnal/nocturnal variations in water-soluble ion and PAH concentrations in the atmospheric PM2.5 of a business office area in Jinan, a heavily polluted city in China. Atmos Res 153:276–285

    Article  CAS  Google Scholar 

  • Zong Z, Wang XP, Tian CG, Chen YJ, Qu L, Ji L, Zhi GR, Li J, Zhang G (2016) Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning. Atmos Chem Phys 16:11249–11265

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (NO. 51778181) and Harbin Science-Technology Bureau (Project NO. 2013AA4AS045).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiwei Song or Yifan Li.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Constantini Samara

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 45 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, W., Song, W., Liu, L. et al. Characteristics of indoor and outdoor fine particles in heating period at urban, suburban, and rural sites in Harbin, China. Environ Sci Pollut Res 27, 1825–1834 (2020). https://doi.org/10.1007/s11356-019-06640-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06640-7

Keywords

Navigation