Skip to main content
Log in

The corrosion process caused by the activity of the anaerobic sporulated bacterium Clostridium celerecrescens on API XL 52 steel

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The microbial corrosion of oil and gas pipes is one of the problems occurring in the oil industry. Various mechanisms explaining microbial corrosion have been demonstrated. Commonly, biocorrosion is attributed to sulfate-reducing bacteria. Also, it has recently been reported that microbial species can connect their electron transport system to metal electrodes. In this research, two spore-forming bacteria isolated in different years from a gas pipeline were identified by biochemical techniques and by 16S rDNA amplification, sequencing, and comparison with the NCBI database. Isolates were also compared between them using molecular techniques as the restriction patterns, unique for 16S rDNA (ARDRA), and the profile of the amplified bit from the genomic DNA, using an unspecific primer (RAPD). The results obtained showed that both isolates corresponded to Clostridium celerecrescens with a 99% similarity according to the sequence reported on the NCBI database. Also, the ARDRA and RAPD electrophoretic profiles of both strains were identical, and no plasmids were found in the strains. Thus, it can be settled that this bacterium is persistent in the environment prevailing in gas pipelines. Also, it was demonstrated that the bacterial secretion of organic acids contributes to the pitting and general biocorrosion of API XL 52 steel. The rates of corrosion obtained, approximately after 40 days, were correlated with the presence and metabolic activity of C. celerecrescens on the metallic surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • American Petroleum Institute (1990) API RP 38. Recommended practice for biological analysis of subsurface injection water. API, Washington, D.C

    Google Scholar 

  • Arais LR, Barbosa AV, Andrade JRC, Gomes TAT, Asensi MD, Aires CAM, Cerqueira (2018) Zoonotic potential of atypical enteropathogenic Escherichia coli (aEPEC) isolated from puppies with diarrhoea in Brazil. Vet Microbiol 227:45–51

    Article  Google Scholar 

  • ASTM G 01-03 (2011) Standard practice for preparing, cleaning and evaluating corrosion test specimens, ASTM book of standards, vol 3.02, West Conshohocken

  • ASTM G 31-72 (2011) Standard practice for laboratory immersion corrosion testing of metals, ASTM book of standards, vol 3.02, West Conshohocken

  • Balows A, Trüper GH, Dworkin M, Harder W, Schleifer HK (1992) The prokaryotes: a handbook on the biology of bacteria: ecophysiology, isolation, identification, and applications, vol 2. Springer-Verlag, New York

    Google Scholar 

  • Batmanghelich F, Li L, Seo Y (2017) Infleunce of multispecies biofilms of Pseudomonas aeruginosa and Desulfovibrio vulgaris on the corrosion of cast iron. Corros Sci 121:94–104

    Article  CAS  Google Scholar 

  • Beech IB (2004) Corrosion of technical materials in the presence of biofilms- current understanding and state-of-the-art methods of study. Int Biodeterior Biodegradation 53:177–183

    Article  CAS  Google Scholar 

  • Beech IW, Gaylarde CC (1999) Recent advances in the study of biocorrosion: an overview. Rev Microbiol 30(3):117–190

    Article  Google Scholar 

  • Beech IB, Sunner J (2004) Biocorrosion: towards understanding interactions between biofilms and metals. Curr Opin Biotechnol 15:181–186

    Article  CAS  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  CAS  Google Scholar 

  • Blodgett R (2003) Bacteriological Analytical Manual. Appendix 2. Most probable number from serial dilutions. U.S. Food and Drug Administration, USA

  • Boakye EY, Dotse-Lawson IY, Akyae-Danso SK, Kwame-Offei S (2016) Characterization and diversity of rhizobia nodulating selected tree legumes in Ghana. Symbiosis. 69:89–99

    Article  Google Scholar 

  • Boopathy R, Daniels L (1991) Effect of pH on anaerobic mild steel corrosion by methanogenic bacteria. Appl Environ Microbiol 57(7):2104–2108

    CAS  Google Scholar 

  • Cato EP, George WL, Finegold SM, Clostridium G (1986) Prazmowski 1880, 23 AL. In: Sneath PHA, Mair NS, Sharpe ME, Holt JG (eds) Bergey’s manual of systematic bacteriology, vol 2. Williams & Wilkins, Baltimore

    Google Scholar 

  • Cauich SP, Alatriste MF, García CE, Aquino SC (2001) Identification of anaerobic non spore-forming Gram-positive bacilli by biochemical tests and gas-liquid chromatography. Rev Latinoam Microbiol 43:27–35

    Google Scholar 

  • Cervantes-Tobón A, Godínez-Salcedo JG, González-Velázquez JL, Díaz-Cruz M (2014) Corrosion rates of API 5L X-52 and X-65 steels in synthetic brines and brines with H2S as a function of rate in a rotating cylinder electrode. Int J Electrochem Sci 9:2454–2469

    Google Scholar 

  • Characklis WG, Marshall KC (1990) Biofilms. Wiley, New York

    Google Scholar 

  • Chávez TCB, Peña SG, Rodríguez AG, Reyes MMR, Duarte EE, Taylor ML (2005) Aislamiento de Histoplasma capsulatum en los murciélagos Desmodus rotundus (no migratorio) y Tadarida brasiliensis (migratorio de larga distancia): primeros registros en México. Rev Mex Mic 20:61–70

  • Collins MD, Lawson PA, Willems A (1994) The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol 44:674–679

    Article  CAS  Google Scholar 

  • Costerton JW, Geesey GC, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95

    Article  CAS  Google Scholar 

  • Donlan RM (2002) Biofilms: microbial life on surfaces. Emerg Infect Dis 8:881–890

    Article  Google Scholar 

  • Dubiel M, Hsu CH, Chien CC, Mansfeld F, Newman DK (2002) Microbial iron respiration can protect steel from corrosion. Appl Environ Microbiol 68(3):1440–1445

    Article  CAS  Google Scholar 

  • Eid MM, Duncan KE, Tanner RS (2018) A semi-continuous system for monitoring microbially influenced corrosion. J Microbiol Methods 150:55–60

    Article  CAS  Google Scholar 

  • Enning D, Garrelfs J (2014) Corrosion of iron by sulfate-reducing bacteria: new views of an old problem. Appl Environ Microbiol 80(4):1226–1236

    Article  CAS  Google Scholar 

  • Feugeas F, Magnin JP, Cornet A, Rameau JJ (1997) Corrosion influence par les microorganisms: influence du biofilm sur la corrosion des aciers, techniques et resultants récents. J Phys III 7:631–663

    CAS  Google Scholar 

  • Forbes BA, Sahm DF, Weissfeld AS, Treviño EA (2002) Diagnostic microbiology, 11th edn. Mosby Inc., Philadelphia

    Google Scholar 

  • Gaylarde CC, Johnston JM (1982) The effect of Vibrio anguillarum on the anaerobic corrosion of mild steel by Desulfovibrio vulgaris. IBBS 18:111–116

  • Gaylarde CC, Videla HA (1987) Localised corrosion induced by marine Vibrio. Int Biodeterior 23:91–104

    Article  CAS  Google Scholar 

  • Hernández GMJ, Zavala OG, Ruiz ON, Juárez RC, García ER, Padilla VA (2004) Microbial consortium influence upon steel corrosion rate, using polarisation resistance and electrochemical noise techniques. Electrochim Acta 49:4295–4301

    Article  CAS  Google Scholar 

  • Holt JG, Kieg NR, Sneath PHA, Steley JT, Williams ST (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore

    Google Scholar 

  • Hopkins KL, Hilton AC (2001) Restriction endonuclease analysis of RAPD-PCR amplicons derived from Shiga-like toxin-producing Escherichia coli O157 isolates. J Med Microbiol 50:90–95

    Article  CAS  Google Scholar 

  • Javed MA, Stoddart PR, Wade SA (2015) Corrosion of carbon steel by sulphate reducing bacteria: initial attachment and the role of ferrous ions. Corros Sci 93:48–57

    Article  CAS  Google Scholar 

  • Jia R, Yang D, Li Y, Xu D, Gu T (2017) Mitigation of the Desulfovibrio vulgaris biofilm using alkyldimethylbenzylammonium chloride enhanced by D-amino acids. Int Biodeterior Biodegrad 117:97–104

    Article  CAS  Google Scholar 

  • Jia R, Tan JL, Jin P, Blackwood DJ, Xu D, Gu T (2018) Effects of biogenic H2S on the microbiologically influenced corrosion of C1018 carbon steel by sulfate reducing Desulfovibrio vulgaris biofilm. Corros Sci 130:1–11

    Article  CAS  Google Scholar 

  • Jia R, Unsal T, Xub D, Lekbach Y, Gu T (2019) Microbiologically influenced corrosion and current mitigation strategies: a state of the art review. Int Biodeterior Biodegrad 137:42–58

    Article  CAS  Google Scholar 

  • Koneman EW, Allen SD, Janda WM, Schreckenberger PC, Winn WC (1997) Color atlas and textbook of diagnostic microbiology, 5th edn. Lippincott-Raven Publishers, Philadelphia

    Google Scholar 

  • Koskey G, Mburu SW, Kimiti JM, Ombori O, Maingi JM, Njeru EM (2018) Genetic characterization and diversity of Rhizobium isolated from root nodules of mid-altitude climbing bean (Phaseolus vulgaris L.) varieties. Front Microbiol 9:968

    Article  Google Scholar 

  • Li Y, Jia R, Al-Mahamedh HH, Xu D, Gu T (2016) Enhanced biocide mitigation of field biofilm consortia by a mixture of d-amino acids. Front Microbiol 7:896

    Google Scholar 

  • Li Q, Wang J, Xing X, Hu W (2018a) Corrosion behavior of X65 steel in seawater containing sulfate reducing bacteria under aerobic conditions. Bioelechem. 122:40–50

    CAS  Google Scholar 

  • Li Y, Xu D, Chen C, Li X, Jia R, Zhang D, Sand W, Wang F, Gu T (2018b) Anaerobic microbiologically influenced corrosion mechanisms interpreted using bioenergetics and bioelectrochemistry: a review. J Mater Sci Technol 34:1713–1718

    Article  Google Scholar 

  • Liduino VS, Lutterbach MTS, Sérvulo EFC (2018) Biofilm activity on corrosion of API 5L X65 steel weld bead. Colloids Surf B 172:43–50

    Article  CAS  Google Scholar 

  • Liu H, Cheng YF (2017) Mechanism of microbiologically influenced corrosion of X52 pipeline steel in a wet soil containing sulfate-reduced bacteria. Electrochim Acta 253:368–378

    Article  CAS  Google Scholar 

  • Liu W, Marsh T, Cheng H, Forney LJ (1997) Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microbiol 63(11):4516–4522

    CAS  Google Scholar 

  • Liu H, Xu D, Dao AQ, Zhang G, Lv Y, Liu H (2015) Study of corrosion behavior and mechanism of carbon steel in the presence of Chlorella vulgaris. Corros Sci 101:84–93

    Article  CAS  Google Scholar 

  • Madico G, Akopyants SN, Berg ED (1995) Arbitrarily primed PCR DNA fingerprinting of Escherichia coli 0157:H7 strains by using templates from boiled cultures. J Clin Microbiol 33(6):1534–1536

    CAS  Google Scholar 

  • Maleki-Kakelar H, Barzegari A, Hanifian S, Barar J, Omidi Y (2019) Isolation and molecular identification of Lactobacillus with probiotic potential from abomasums driven rennet. Food Chem 272:709–714

    Article  CAS  Google Scholar 

  • Marchal R, Chaussepied B, Warzywoda M (2001) Effect of ferrous ion availability on growth of a corroding sulphate-reducing bacterium. Int Biodeterior Biodegrad 47:125–131

    Article  CAS  Google Scholar 

  • Massol DAA, Weller R, Rios HL, Zhou ZJ, Hickey FR, Tiedje MJS (1997) Succession and convergence of biofilm communities in fixed-film reactors treating aromatic hydrocarbons in groundwater. Appl Environ Microbiol 63(1):270–276

    Google Scholar 

  • Matini M, Roostaei M, Fallah M, Maghsood AH, Saidijam M, Fasihi-Harandi M (2018) Genetic identification of Echinococcus granulosus isolates in Hamadan, Western Inan. Iran J Parasitol 13(3):423–429

    Google Scholar 

  • NACE Standard RP0775-2005 (2005) Preparation, installation, analysis and interpretation of corrosion coupons in oilfield operations. Houston, Texas, USA

  • NACE Standard TM0194-2004. Field monitoring of bacterial growth in oilfield systems. NACE International. Houston. 2004

  • Nisiotou A, Dourou D, Filippousi ME, Banilas G, Tassou C (2014) Weissella uvarum sp. nov., isolated from wine grapes. Int J Syst Evol Microbiol 64:3885–3890

    Article  CAS  Google Scholar 

  • Nolasco-Cancino H, Santiago-Urbina JA, Wacher C, Ruíz-Terán F (2018) Predominant yeasts during artisanal mezcal fermentation and their capacity to ferment maguey juice. Front Microbiol 9:2900

    Article  Google Scholar 

  • Padilla VA, García OE, Alazard D (2006) Comparative electrochemical noise study of the corrosion process of carbon steel by the sulfate-reducing bacterium Desulfovibrio alaskensis under nutritionally rich and oligotrophic culture conditions. Electrochim Acta 51:3841–3847

    Article  CAS  Google Scholar 

  • Pandey AK, Nagpure NS, Trivedi SP (2018) Genotoxicity assessment of pesticide profenofos in freshwater fish Channa punctatus (Bloch) using comet assay and random amplified polymorphic DNA (RAPD). Chemosphere. 211:316–323

    Article  CAS  Google Scholar 

  • Park JM, Yang CY, Park H, Kim YM (2014) Development of a genus-specific PCR combined with ARDRA for the identification of Leuconostoc species in kimichi. Food Sci Biotechnol 23(2):511–516

    Article  CAS  Google Scholar 

  • PEMEX (2000) Protección interior de ductos con inhibidores. Comité de Normalización de Petróleos Mexicanos. Norma NRF-005-Pemex-2000

  • Potekhina JS, Sherisheva NG, Povetkina LP, Pospelov AP, Rakitina TA, Warnecke F, Gottschalk G (1999) Role of microorganisms in corrosion inhibition metals in aquatic habitats. Appl Microbiol Biotechnol 52:639–646

    Article  CAS  Google Scholar 

  • Rajala P, Carpén L, Vepsäläinen M, Raulio M, Sohlberg E, Bomberg M (2015) Microbially induced corrosion of carbon steel in deep groundwater environment. Front Microbiol 6:647

    Article  Google Scholar 

  • Ramos-Monroy OA, Hernández-Gayosso MJ, Ruiz-Ordaz N, Zavala-Olivares G, Juárez-Ramírez C (2011) Corrosion of API XL 52 steel in presence of Clostridium celerecrescens. Mater Corros 62:878–883

    Article  CAS  Google Scholar 

  • Relman DA (1993) Universal bacterial 16S rRNA amplification and sequencing. In: Persing DH, Smith TF, Tenover FC, White TJ (eds) Diagnostic molecular microbiology: principles and applications. American Society for Microbiology, Washington, DC, pp 489–495

    Google Scholar 

  • Rizzo A (1980) Rapid Gas-chromatographic method for identification of metabolic products of anaerobic bacteria. J Clin Microbiol 11:418–421

    CAS  Google Scholar 

  • Sanders P, Hamilton W (1984) Biological and corrosion activities of sulphate reducing bacteria in industrial process plant. Biologically Induced Corrosion. NACE International, Houston, pp 115–123

    Google Scholar 

  • Spano G, Beneduce L, Tarantino D, Zapparoli G, Massa S (2002) Characterization of Lactobacillus plantarum from wine must by PCR species-specific and RAPD-PCR. Lett Appl Microbiol 35:370–374

    Article  CAS  Google Scholar 

  • Torres-Bautista BE, Wikiel AJ, Datsenko I, Vera M, Sand W, Seyeux A, Zanna S, Frateur I, Marcus P (2015) Influence of extracellular polymeric substances (EPS) from Pseudomonas NCIMB 2021 on the corrosion behaviour of 70Cu-30Ni alloy in seawater. J Electroanal Chem 737:184–197

    Article  CAS  Google Scholar 

  • Videla HA (1996) Manual of Biocorrosion. CRC Lewis Publishers, Boca Raton

    Google Scholar 

  • Voordouw G, Menon P, Pinnock T, Sharma M, Shen Y, Venturelli A, Voordouw J, Sexton A (2016) Use of homogeneously-sized carbon steel ball bearings to study microbially-influenced corrosion in oil field samples. Front Microbiol 7:351

    Article  Google Scholar 

  • Wang H, He L, Song J, Cui W, Zhang Y, Jia C, Francis D, Rogers HJ, Sun L, Tai P, Hui X, Yang Y, Liu W (2016) Cadmium-induced genomic instability in Arabidopsis: molecular toxicological biomarkers for early diagnosis of cadmium stress. Chemosphere. 150:258–265

    Article  CAS  Google Scholar 

  • Wojciechowska-Koszko I, Krasnodębska-Szponder B, Mnichowska-Polanowska M, Szymaniak L, Czekajło-Kołodziej U, Giedrys-Kalemba S (2013) Optimization of RAPD-PCR method for Candida albicans fingerprinting. Mikologia Lekarska 20(3):89–56

    Google Scholar 

  • Xu D, Li Y, Gu T (2016) Mechanistic modeling of biocorrosion caused by biofilms of sulfate reducing bacteria and acid producing bacteria. Bioelectrochemistry. 110:52–58

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank to the Instituto Mexicano del Petróleo for carrying ESEM and EDS studies and to the Instituto Politécnico Nacional and SNI-CONACYT for the fellowships to Ramos-Monroy, Ruiz-Ordaz, Juárez-Ramírez, and Galíndez-Mayer.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Oswaldo Arturo Ramos Monroy or Nora Ruiz Ordaz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Diane Purchase

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos Monroy, O.A., Ruiz Ordaz, N., Hernández Gayosso, M.J. et al. The corrosion process caused by the activity of the anaerobic sporulated bacterium Clostridium celerecrescens on API XL 52 steel. Environ Sci Pollut Res 26, 29991–30002 (2019). https://doi.org/10.1007/s11356-019-06064-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-06064-3

Keywords

Navigation