Skip to main content
Log in

Efficient abatement of an iodinated X-ray contrast media iohexol by Co(II) or Cu(II) activated sulfite autoxidation process

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Efficient abatement of an iodinated X-ray contrast media iohexol by an emerging sulfite autoxidation advanced oxidation process is demonstrated, which is based on transition metal ion–catalyzed autoxidation of sulfite to form active oxidizing species. The efficacy of the combination of sulfite and transition metal ions (Ag(I), Mn(II), Co(II), Fe(II), Cu(II), Fe(III), or Ce(III)) was tested for iohexol abatement. Co(II) and Cu(II) are proven to show more pronounced catalytic activity than other metals at pH 8.0. According to the quenching studies, sulfate radical (SO4•−) is identified to be the primary species for oxidation of iohexol. Increasing dosages of metal ion or sulfite and higher pH values are favorable for iohexol abatement. Inhibition of iohexol abatement is observed in the absence of dissolved oxygen, which is vital for the production of SO5•− and subsequent formation of SO4•−. Overall, activation of sulfite to produce reactive radicals with extremely low Co(II) or Cu(II) concentrations (in the range of μg L−1) in circumneutral conditions is confirmed, which offers a potential SO4•−-based advanced oxidation process in treatment of aquatic organic contaminants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alipázaga MV, Coichev N (2003) Synergistic effect of some transition metal ions on the sulfite induced autoxidation of Cu(II)/tetraglycine complex. Analytical applications. Anal Lett 36:2255–2275

    Article  Google Scholar 

  • Brandt C, van Eldik R (1995) Transition metal-catalyzed oxidation of sulfur(IV) oxides. Atmospheric-relevant processes and mechanisms. Chem Rev 95:119–190

    Article  CAS  Google Scholar 

  • Chan TW, Graham NJ, Chu W (2010) Degradation of iopromide by combined UV irradiation and peroxydisulfate. J Hazard Mater 181:508–513

    Article  CAS  Google Scholar 

  • Chen J, Qian Y, Liu H, Huang T (2016a) Oxidative degradation of diclofenac by thermally activated persulfate: implication for ISCO. Environ Sci Pollut Res 23(4):3824–3833

    Article  CAS  Google Scholar 

  • Chen J, Zhang L, Huang T, Li W, Wang Y, Wang Z (2016b) Decolorization of azo dye by peroxymonosulfate activated by carbon nanotube: radical versus non-radical mechanism. J Hazard Mater 320:571–580

    Article  CAS  Google Scholar 

  • Chen L, Tang M, Chen C, Chen M, Luo K, Xu J, Zhou D, Wu F (2017) Efficient bacterial inactivation by transition metal catalyzed auto-oxidation of sulfite. Environ Sci Technol 51:12663–12671

    Article  CAS  Google Scholar 

  • Cheng L, Wei M, Huang L, Pan F, Xia D, Li X, Xu A (2014) Efficient H20 oxidation of organic dyes catalyzed by simple copper(II) ions in bicarbonate aqueous solution. Ind Eng Chem Res 53:3478–3485

    Article  CAS  Google Scholar 

  • Conklln MH, Hoffmann MR (1988) Metal ion-sulfur(IV) chemistry. 2. Kinetic studies of the redox chemistry of copper(II)-sulfur(IV) complexes. Environ Sci Technol 22:891–898

    Article  Google Scholar 

  • Dong H, Qiang Z, Hu J, Sans C (2017) Accelerated degradation of iopamidol in iron activated persulfate systems: roles of complexing agents. Chem Engin J 316:288–295

    Article  CAS  Google Scholar 

  • Duirk SE, Lindell C, Cornelison CC, Kormos J, Ternes TA, Attene-Ramos M, Osiol J, Wagner ED, Plewa MJ, Richardson SD (2011) Formation of toxic iodinated disinfection by-products from compounds used in medical imaging. Environ Sci Technol 45:6845–6854

    Article  CAS  Google Scholar 

  • Guo Y, Lou X, Fang C, Xiao D, Wang Z, Liu J (2013) Novel photo-sulfite system: toward simultaneous transformations of inorganic and organic pollutants. Environ Sci Technol 47:11174–11181

    Article  CAS  Google Scholar 

  • Hu J, Dong H, Qu J, Qiang Z (2017) Enhanced degradation of iopamidol by peroxymonosulfate catalyzed by two pipe corrosion products (CuO and delta-MnO2). Water Res 112:1–8

    Article  CAS  Google Scholar 

  • Humphrey RE, Ward MH, Hinze W (2002) Spectrophotometric determination of sulfite with 4,4′-dithio-dipyridine and 5,5′-dithiobis(2-nitrobenzoic acid). Anal Chem 42:698–702

    Article  Google Scholar 

  • Jiang B, Liu Y, Zheng J, Tan M, Wang Z, Wu M (2015) Synergetic transformations of multiple pollutants driven by Cr(VI)-sulfite reactions. Environ Sci Technol 49:12363–12371

    Article  CAS  Google Scholar 

  • Kong X, Jiang J, Ma J, Yang Y, Pang S (2018) Comparative investigation of x-ray contrast medium degradation by UV/chlorine and UV/H2O2. Chemosphere 193:655–663

    Article  CAS  Google Scholar 

  • Li Q, Wang L, Zhao Y et al (2014a) Oxidation rate of magnesium sulfite catalyzed by cobalt ions. Environ Sci Technol 48:4145–4152

    Article  CAS  Google Scholar 

  • Li X, Shi W, Cheng Q, Huang L, Wei M, Cheng L, Zeng Q, Xu A (2014b) Catalytic activation of dioxygen to hydroxyl radical and efficient oxidation of o-aminophenol by cobalt(II) ions in bicarbonate aqueous solution. Appl Catal A Gen 475:297–304

    Article  CAS  Google Scholar 

  • Lutze HV, Kerlin N, Schmidt TC (2015) Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate. Water Res 72:349–360

    Article  CAS  Google Scholar 

  • Neta P, Huie RE, Ross AB (1988) Rate constants for reactions of inorganic radicals in aqueous solution. J Phys Chem Ref Data 17:1027–1284

    Article  CAS  Google Scholar 

  • Ning B, Graham NJD (2008) Ozone degradation of iodinated pharmaceutical compounds. J Environ Engin 134:944–953

    Article  CAS  Google Scholar 

  • Pan C, Gao Q, Stanbury DM (2015) Kinetics of the benzaldehyde-inhibited oxidation of sulfite by chlorine dioxide. Inorg Chem 55:366–370

    Article  Google Scholar 

  • Pasiukbronikowska W, Bronikowski T, Ulejczyk M (1986) Mechanism and kinetics of autoxidation of calcium sulfite slurries. Environ Sci Technol 26:1976–1981

    Article  Google Scholar 

  • Perez S, Barcelo D (2007) Fate and occurrence of X-ray contrast media in the environment. Anal Bioanal Chem 387:1235–1246

    Article  CAS  Google Scholar 

  • Qian Y, Xue G, Chen J (2018) Oxidation of cefalexin by thermally activated persulfate: kinetics, products, and antibacterial activity change. J Hazard Mater 354:153–160

    Article  CAS  Google Scholar 

  • Richardson SD, Fasano F, Ellington JJ, Crumley FG, Buettner KM, Evans JJ, Blount BC, Silva LK, Waite TJ, Luther GW, McKague AB, Miltner RJ, Wagner ED, Plewa MJ (2008) Occurrence and mammalian cell toxicity of iodinated disinfection byproducts in drinking water. Environ Sci Technol 42:8330–8338

    Article  CAS  Google Scholar 

  • Sun B, Dong H, He D, Rao D, Guan X (2016) Modeling the kinetics of contaminants oxidation and the generation of manganese(III) in the permanganate/bisulfite process. Environ Sci Technol 50:1473–1482

    Article  CAS  Google Scholar 

  • Ternes TA, Hirsch R (2000) Occurrence and behavior of X-ray contrast media in sewage facilities and the aquatic environment. Environ Sci Technol 34:2741–2748

    Article  CAS  Google Scholar 

  • Wendel FM, Lutke Eversloh C, Machek EJ et al (2014) Transformation of iopamidol during chlorination. Environ Sci Technol 48:12689–12697

    Article  CAS  Google Scholar 

  • Xie P, Guo Y, Chen Y, Wang Z, Shang R, Wang S, Ding J, Wan Y, Jiang W, Ma J (2017) Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants. Chem Engin J 314:240–248

    Article  CAS  Google Scholar 

  • Xu Z, Li X, Hu X, Yin D (2017) Distribution and relevance of iodinated X-ray contrast media and iodinated trihalomethanes in an aquatic environment. Chemosphere 184:253–260

    Article  CAS  Google Scholar 

  • Yuan Y, Zhao D, Li J, Wu F, Brigante M, Mailhot G (2018) Rapid oxidation of paracetamol by cobalt(II) catalyzed sulfite at alkaline pH. Catal Today 313:155–160

    Article  CAS  Google Scholar 

  • Zhang J, Ma J, Song H, Sun S, Zhang Z, Yang T (2018a) Organic contaminants degradation from the S(IV) autoxidation process catalyzed by ferrous-manganous ions: a noticeable Mn(III) oxidation process. Water Res 133:227–235

    Article  CAS  Google Scholar 

  • Zhang R, Wang X, Zhou L, Liu Z, Crump D (2018b) The impact of dissolved oxygen on sulfate radical-induced oxidation of organic micro-pollutants: a theoretical study. Water Res 135:144–154

    Article  CAS  Google Scholar 

  • Zhou D, Chen L, Zhang H (2015a) Sulfur-replaced Fenton systems: can sulfate radical substitute hydroxyl radical for advanced oxidation technologies? J Chem Technol Biotechnol 90:775–779

    Article  CAS  Google Scholar 

  • Zhou D, Yuan Y, Yang S, Gao H, Chen L (2015b) Roles of oxysulfur radicals in the oxidation of acid orange 7 in the Fe(III)–sulfite system. J Sulfur Chem 36:373–384

    Article  CAS  Google Scholar 

  • Zhou L, Ferronato C, Chovelon JM, Sleiman M, Richard C (2017) Investigations of diatrizoate degradation by photo-activated persulfate. Chem Engin J 311:28–36

    Article  CAS  Google Scholar 

  • Zhou D, Chen L, Li J, Wu F (2018) Transition metal catalyzed sulfite auto-oxidation systems for oxidative decontamination in waters: a state-of-the-art minireview. Chem Eng J 346:726–738

    Article  CAS  Google Scholar 

Download references

Funding

This work was funded by the National Natural Science Foundation of China (Grant No. 51808233) and the Scientific Research Funds of Huaqiao University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaodan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Vítor Pais Vilar

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Co(II) and Cu(II) exhibit excellent catalytic activity for sulfite autoxidation.

• Co(II)/sulfite or Cu(II)/sulfite achieve rapid abatement of iohexol at neutral pH.

• Sulfate radical is identified as the main active species for iohexol degradation.

• Bicarbonate facilitates iohexol abatement in Co(II)/sulfite process.

Electronic supplementary material

ESM 1

(DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Wu, W. & Yan, Y. Efficient abatement of an iodinated X-ray contrast media iohexol by Co(II) or Cu(II) activated sulfite autoxidation process. Environ Sci Pollut Res 26, 24707–24719 (2019). https://doi.org/10.1007/s11356-019-05601-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05601-4

Keywords

Navigation