Skip to main content
Log in

Effects of fulvic acid on aggregation, sedimentation, and adsorption of Fe3O4 magnetic nanoparticles

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Environmental behavior, bioavailability, and risks posed by Fe3O4, magnetic nanoparticles (Fe3O4 NPs) in surface waters are affected by complex geochemistry, including pH and inorganic and organic matter. This work provides a systematic analysis of adsorption of fulvic acid (FA) on surfaces of Fe3O4 NPs with adsorption kinetics, adsorption thermodynamic, and adsorption isotherm. Adsorption of FA on surfaces of Fe3O4 NPs is consistent with assumptions of Langmuir and Freundlich adsorption isotherm models. The adsorption amount of FA was inversely proportional to solution pH, and the maximum amount is 128.6 mg g−1. Adsorption of FA on surfaces of Fe3O4 NPs is a spontaneous endothermic process. FA plays an important role in aggregation and suspension/sedimentation behavior of Fe3O4 NPs in aquatic environmental. With continuous adsorption of FA, electrostatic repulsion between the particles and the steric hindrance of FA significantly decreased aggregation and increased suspension of Fe3O4 NPs. The results of FTIR and XPS indicated that FA was adsorbed on Fe3O4 NPs mainly through chemical reactions, and carbohydrates particularly play an important role in adsorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aiken GR, HsuKim H, Ryan JN (2011) Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environ Sci Technol. 45(8):3196–3201

  • Baalousha M (2009) Aggregation and disaggregation of iron oxide nanoparticles: influence of particle concentration, pH and natural organic matter. Sci Total Environ 407(6):2093–2101

    Article  CAS  Google Scholar 

  • Barhoumi L, Dewez D (2013) Toxicity of superparamagnetic iron oxide nanoparticles on green alga chlorella vulgaris. Biomed Res Int 2013:647974

    Article  CAS  Google Scholar 

  • Chappell MA, George AJ, Dontsova KM, Porter BE, Price CL, Zhou P, Morikawa E, Kennedy AJ, Steevens JA (2009) Surfactive stabilization of multi-walled carbon nanotube dispersions with dissolved humic substances. Environ Pollut 157(4):1081–1087

    Article  CAS  Google Scholar 

  • Chung HK, Kim WH, Park J, Cho J, Jeong TY, Park PK (2015) Application of Langmuir and Freundlich isotherms to predict adsorbate removal efficiency or required amount of adsorbent. J Ind Eng Chem 28(25):241–246

    Article  CAS  Google Scholar 

  • Erhayem M, Sohn M (2014a) Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles. Sci Total Environ 468-469:249–257

    Article  CAS  Google Scholar 

  • Erhayem M, Sohn M (2014b) Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles. Sci Total Environ 470-471:92–98

    Article  CAS  Google Scholar 

  • Gouré-Doubi H, Martias C, Smith A, Villandier N, Sol V, Gloaguen V, Feuillade G (2018) Adsorption of fulvic and humic like acids on surfaces of clays: relation with SUVA index and acidity. Appl Clay Sci 154:83–90

    Article  CAS  Google Scholar 

  • Guzman KAD, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40(24):7688–7693

    Article  CAS  Google Scholar 

  • Hassani A, Khataee A, Karaca S, Karaca M, Kıranşana M (2015a) Adsorption of two cationic textile dyes from water with modified nanoclay: a comparative study by using central composite design. J Environ Chem Eng 3(4):2738–2749

    Article  CAS  Google Scholar 

  • Hassani A, Khataee A, Karaca S, Shirzad-Siboni M (2015b) Surfactant-modified montmorillonite as a nanosized adsorbent for removal of an insecticide: kinetic and isotherm studies. Environ Technol 36(24):3125–3135

    Article  CAS  Google Scholar 

  • Hassani A, Karaca C, Karaca S, Khataee A, Açışlı Ö, Yılmaz B (2018a) Enhanced removal of basic violet 10 by heterogeneous sono-Fenton process using magnetite nanoparticles. Ultrason Sonochem 42:390–402

    Article  CAS  Google Scholar 

  • Hassani A, Karaca M, Karaca S, Khataee A, Açışlı Ö, Yılmaz B (2018b) Preparation of magnetite nanoparticles by high-energy planetary ball mill and its application for ciprofloxacin degradation through heterogeneous Fenton process. J Environ Manag 211:53–62

    Article  CAS  Google Scholar 

  • He ML, Chen YT, Yan YQ, Zhou SM, Wang CH (2017) Influence of interaction between α-Fe2O3 nanoparticles and dissolved fulvic acid on the physiological responses in Synechococcus sp. PCC7942. Bull Environ Contam Toxicol 99(6):719–727

    Article  CAS  Google Scholar 

  • Hu J, Chen GH, Lo MCI (2005) Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles. Water Res 39(18):4528–4536

    Article  CAS  Google Scholar 

  • Hyung H, Kim JH (2008) Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ Sci Technol. 42(12):4416–4421

    Article  CAS  Google Scholar 

  • Illés E, Tombácz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interface Sci 295(1):115–123

    Article  CAS  Google Scholar 

  • Jayalath S, Larsen SC, Grassian VH (2018) Surface adsorption of Nordic aquatic fulvic acid on amine-functionalized and non-functionalized mesoporous silica nanoparticles. Environ Sci Nano 5:2162–2171

    Article  CAS  Google Scholar 

  • Kang SH, Xing BS (2008) Humic acid fractionation upon sequential adsorption onto goethite. Langmuir 24(6):2525–2531

    Article  CAS  Google Scholar 

  • Karaca S, Gürses A, Açışlı Ö, Hassani A, Kıranşan M, Yıkılmaz K (2013) Modeling of adsorption isotherms and kinetics of Remazol Red RB adsorption from aqueous solution by modified clay. Desalin Water Treat 51(13–15):2726–2739

    Article  CAS  Google Scholar 

  • Katsnelson BA, Degtyareva TD, Minigalieva II, Privalova LI, Kuzmin SV, Yeremenko OS, Kireyeva EP, Sutunkova MP, Valamina II, Khodos MY, Kozitsina AN, Shur VY, Vazhenin VA, Potapov AP, Morozova MV (2011) Subchronic systemic toxicity and bioaccumulation of Fe3O4 nano- and microparticles following repeated intraperitoneal administration to rats. Int J Toxicol 30(1):59–68

    Article  CAS  Google Scholar 

  • Li A, Xu MJ, Li WH, Wang XJ, Dai JY (2008) Adsorption characterizations of fulvic acid fractions onto kaolinite. J Environ Sci 20(5):528–535

    Article  CAS  Google Scholar 

  • Li YJ, Yang C, Guo XT, Dang Z, Li XQ, Zhang Q (2015) Effects of humic acids on the aggregation and sorption of nano-TiO2. Chemosphere 119:171–176

    Article  CAS  Google Scholar 

  • Liang L, Luo L, Zhang SZ (2011) Adsorption and desorption of humic and fulvic acids on SiO2 particles at nano- and micro-scales. Colloid Surface A 384(1–3):126–130

    Article  CAS  Google Scholar 

  • Limbach LK, Li Y, Grass RN, Brunner TJ, Hintermann MA, Muller M, Gunther D, Stark WJ (2005) Oxide nanoparticle uptake in human lung fibroblasts: effects of particle size, agglomeration, and diffusion at low concentrations. Environ. Sci. Technol. 39(23):9370–9376

    Article  CAS  Google Scholar 

  • Lin DH, Liu N, Yang K, Zhu LZ, Xu Y, Xing BS (2009) The effect of ionic strength and pH on the stability of tannic acid-facilitated carbon nanotube suspensions. Carbon 47(12):2875–2882

    Article  CAS  Google Scholar 

  • Mashjoor S, Yousefzadi M, Zolgharnain H, Kamrani E, Alishahi M (2018) Organic and inorganic nano-Fe3O4: alga ulva flexuosa-based synthesis, antimicrobial effects and acute toxicity to briny water rotifer Brachionus rotundiformis. Environ Pollut 237:50–64

    Article  CAS  Google Scholar 

  • Mcdonald S, Bishop AG, Prenzler PD, Robards K (2004) Analytical chemistry of freshwater humic substances. Anal Chim Acta 527(2):105–124

    Article  CAS  Google Scholar 

  • Pan B, Xing BS (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42(24):9005–9013

    Article  CAS  Google Scholar 

  • Panessa-Warren BJ, Maye MM, Warren JB, Crosson KM (2009) Single walled carbon nanotube reactivity and cytotoxicity following extended aqueous exposure. Environ Pollut 157(4):1140–1151

    Article  CAS  Google Scholar 

  • Parfitt RL, Fraser AR, Farmer VC (2006) Adsorption on hydrous oxides. III. Fulvic acid and humic acid on goethite, gibbsite and imogolite. Eur J Soil Sci 28(2):289–296

    Article  Google Scholar 

  • Philippe A, Schaumann GE (2014) Interactions of dissolved organic matter with natural and engineered inorganic colloids: A Review. Environ Sci Technol. 48(16):8946–8962.

  • Pelley AJ, Tufenkji N (2008) Effect of particle size and natural organic matter on the migration of nano- and microscale latex particles in saturated porous media. J Colloid Interface Sci 321(1):74–83

    Article  CAS  Google Scholar 

  • Pettibone JM, Cwiertny DM, Scherer M, Grassian VH (2008) Adsorption of organic acids on TiO2 nanoparticles: effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24(13):6659–6667

    Article  CAS  Google Scholar 

  • Tang Z, Zhao XL, Zhao TH, Wang H, Wang PF, Wu FC et al (2016) Magnetic nanoparticles interaction with humic acid: in the presence of surfactants. Environ Sci Technol 50(16):8640–8648

    Article  CAS  Google Scholar 

  • Vreysen S, Maes A (2008) Adsorption mechanism of humic and fulvic acid onto Mg/Al layered double hydroxides. Appl Clay Sci 38:237–249

    Article  CAS  Google Scholar 

  • Wei SY, Xiang WJ (2013) Adsorption removal of Pb(II) from aqueous solution by fulvic acid-coated ferrihydrite. J Food Agric Environ 11(2):1376–1380

    Google Scholar 

  • Weng L, Van Riemsdijk WH, Koopal LK, Hiemstra T (2006) Adsorption of humic substances on goethite: comparison between humic acids and fulvic acids. Environ Sci Technol 40(24):7494–7500

    Article  CAS  Google Scholar 

  • Yang K, Lin DH, Xing BS (2009) Interactions of humic acid with nanosized inorganic oxides. Langmuir 25(6):3571–3576

    Article  CAS  Google Scholar 

  • Zhou Q, Zhong YH, Chen X, Liu JH, Huang XJ, Wu YC (2014) Adsorption and photocatalysis removal of fulvic acid by TiO2–graphene composites. J Mater Sci 49(3):1066–1075

    Article  CAS  Google Scholar 

  • Zhou YL, Zhang YB, Li GH, Jiang T (2016) Effects of metal cations on the fulvic acid (FA) adsorption onto natural iron oxide in iron ore pelletizing process. Powder Technol 302:90–99

    Article  CAS  Google Scholar 

Download references

Funding

This research was financially supported by the National Natural Science Foundation of China (No. 41673131).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhi Tang or Xiaoli Zhao.

Additional information

Responsible editor: Tito Roberto Cadaval Jr

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, T., Fang, M., Tang, Z. et al. Effects of fulvic acid on aggregation, sedimentation, and adsorption of Fe3O4 magnetic nanoparticles. Environ Sci Pollut Res 26, 21463–21474 (2019). https://doi.org/10.1007/s11356-019-05441-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05441-2

Keywords

Navigation