Skip to main content
Log in

Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) toxicity in agricultural crops is a widespread problem. Little is known about biochar and arbuscular mycorrhizal fungi (AMF) effect on Cd concentration in maize plant either applied separately or in combination. Current study was performed to demonstrate effects of biochar and Rhizophagus clarus on plant growth, photosynthesis activity, nutrients (P, Ca, Mg, Fe, Cu, and Mn), and Cd concentration in maize grown in Cd-spiked soil. The alkaline soil was spiked by Cd factor at three levels: 0 (Cd 0), 5 (Cd 5), and 10 (Cd 10) mg/kg; biochar factor at two levels: 0 and 1%; and mycorrhizal inoculum factor at two levels: MF0 and MF1 (R. clraus). Plants were harvested after 70 days of seed germination, and various morphological and physiological parameters, as well as elemental concentration and root colonization, were recorded. Addition of biochar increased plant biomass by 21% (Cd 5) and 93% (Cd 10), MF1 enhanced by 53% (Cd 0) and 69% (Cd 10), while biochar + MF1 enhanced dry plant biomass by 70% (Cd 0) and 94% (Cd 10). Results showed maximum increase of 94% (Cd 10) in plant biomass was observed in Cd-spiked soil. Root colonization decreased proportionally by increasing Cd concentration and at Cd 10, colonization was 36.7% and 31.7% for MF1 and biochar + MF1 treatments, respectively. Besides that, addition of biochar enhanced root attributes (root length, volume, and surface area) by 34–58% compared to control in Cd 10. The MF1 increased these attributes by 11–78% while biochar + MF1 enhanced by 32–61% in Cd-spiked soil. However, biochar + MF1 neutralized Cd stress in maize plant for gaseous attributes (assimilation rate, transpiration rate, intercellular CO2, and stomatal conductance). The MF1 enhanced Cd concentration in plant as it was 3.32 mg/kg in Cd 5 and 6.73 mg/kg in Cd 10 treatments while addition of biochar phytostabilized Cd and reduced its concentration in plants by 2.0 mg/kg in Cd 5 and 4.27 mg/kg in Cd 10. The biochar + MF1 had 2.9 mg/kg and 4.8 mg/kg Cd concentration in Cd 5 and Cd 10 plants, respectively. Phosphorus concentration was augmented in shoots (up to 26%) and roots (up to 20%) of maize plant in biochar-amended soil than control plants. In biochar + MF1, concentration of P was 1.01% and 0.73% in Cd 5 and Cd 10, respectively. It is concluded that biochar + MF1 treatment enhances plant biomass while addition of sole biochar reduced Cd uptake, slightly indifferent to earlier treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abbas T, Rizwan M, Ali S, Zia-ur-Rehman M, Qayyum MF, Abbas F, Hannan F, Rinklebe J, Ok YS (2017) Effect of biochar on cadmium bioavailability and uptake in wheat (Triticum aestivum L.) grown in a soil with aged contamination. Ecotoxicol Environ Saf 140:37–47

    Article  CAS  Google Scholar 

  • Abhilash P, Powell JR, Singh HB, Singh BK (2012) Plant–microbe interactions: novel applications for exploitation in multipurpose remediation technologies. Trends Biotechnol 30:416–420

    Article  CAS  Google Scholar 

  • Akhtar T, Zia-ur-Rehman M, Naeem A, Nawaz R, Ali S, Murtaza G, Maqsood MA, Azhar M, Khalid H, Rizwan M (2017) Photosynthesis and growth response of maize (Zea mays L.) hybrids exposed to cadmium stress. Environ Sci Pollut Res 24:5521–5529

    Article  CAS  Google Scholar 

  • Ali S, Rizwan M, Noureen S, Anwar S, Ali B, Naveed M, Abd_Allah EF, Alqarawi AA, Ahmad P (2019) Combined use of biochar and zinc oxide nanoparticle foliar spray improved the plant growth and decreased the cadmium accumulation in rice (Oryza sativa L.) plant. Environ Sci Pollut Res 26:11288–11299. https://doi.org/10.1007/s11356-019-04554-y

    Article  CAS  Google Scholar 

  • Anjum SA, Tanveer M, Hussain S, Ullah E, Wang LC, Khan I, Samad RA, Tung SA, Anam M, Shahzad B (2016) Morpho-physiological growth and yield responses of two contrasting maize cultivars to cadmium exposure. Clean Soil Air Water 44:29–36

    Article  CAS  Google Scholar 

  • Artiushenko T, Syshchykov D, Gryshko V, Čiamporová M, Fiala R, Repka V, Martinka M, Pavlovkin J (2014) Metal uptake, antioxidant status and membrane potential in maize roots exposed to cadmium and nickel. Biologia 69:1142–1147

    Article  CAS  Google Scholar 

  • ASTM A (2007) Book of standards volume 15.01: refractories, activated carbon. Advanced ceramics. American Society for Testing Materials, West Conshohocken

    Google Scholar 

  • Bai J, Lin X, Yin R, Zhang H, Junhua W, Xueming C, Yongming L (2008) The influence of arbuscular mycorrhizal fungi on As and P uptake by maize (Zea mays L.) from As-contaminated soils. Appl Soil Ecol 38:137–145

    Article  Google Scholar 

  • Bashir S, Zhu J, Fu Q, Hu H (2018) Cadmium mobility, uptake and anti-oxidative response of water spinach (Ipomoea aquatic) under rice straw biochar, zeolite and rock phosphate as amendments. Chemosphere 194:579–587

    Article  CAS  Google Scholar 

  • Bertholdi AAD, Costa VE, Rodrigues AL, de Almeida LFR (2018) Water deficit modifies the carbon isotopic composition of lipids, soluble sugars and leaves of Copaifera langsdorffii Desf. (Fabaceae). Acta Bot Bras 32:80–87

    Article  Google Scholar 

  • Biermann B, Linderman R (1981) Quantifying vesicular-arbuscular mycorrhizae: a proposed method towards standardization. New Phytol 87:63–67

    Article  Google Scholar 

  • Boominathan R, Doran PM (2003) Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator, Thlaspi caerulescens. Biotechnol Bioeng 83:158–167

    Article  CAS  Google Scholar 

  • Cao J, Feng Y, He S, Lin X (2017) Silver nanoparticles deteriorate the mutual interaction between maize (Zea mays L.) and arbuscular mycorrhizal fungi: a soil microcosm study. Appl Soil Ecol 119:307–316

    Article  Google Scholar 

  • Chen Y, He Y, Luo Y, Yu Y, Lin Q, Wong M (2003) Physiological mechanism of plant roots exposed to cadmium. Chemosphere 50:789–793

    Article  CAS  Google Scholar 

  • Cui Y, Wang Q (2006) Physiological responses of maize to elemental sulphur and cadmium stress. Plant Soil Environ 52:523

    Article  CAS  Google Scholar 

  • Enders A, Lehmann J (2012) Comparison of wet-digestion and dry-ashing methods for total elemental analysis of biochar. Commun Soil Sci Plant Anal 43:1042–1052

    Article  CAS  Google Scholar 

  • Erdem H, Kınay A, Gunal E, Yaban H, Tutuş Y (2017) The effects of biochar application on cadmium uptake of tobacco. Carp J Env Sci 12:447–456

  • Fellet G, Marmiroli M, Marchiol L (2014) Elements uptake by metal accumulator species grown on mine tailings amended with three types of biochar. Sci Total Environ 468:598–608

    Article  CAS  Google Scholar 

  • Fernández R, Fernández-Fuego D, Bertrand A, González A (2014) Strategies for Cd accumulation in Dittrichia viscosa (L.) Greuter: role of the cell wall, non-protein thiols and organic acids. Plant Physiol Biochem 78:63–70

    Article  CAS  Google Scholar 

  • Fernández-Fuego D, Bertrand A, González A (2017) Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens. Environ Pollut 231:1153–1162

    Article  CAS  Google Scholar 

  • Garrido RA, Reckamp JM, Satrio JA (2017) Effects of pretreatments on yields, selectivity and properties of products from pyrolysis of Phragmites australis (common reeds). Environments 4:96

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gucwa-Przepióra E, Małkowski E, Sas-Nowosielska A, Kucharski R, Krzyżak J, Kita A, Römkens PFAM (2007) Effect of chemophytostabilization practices on arbuscular mycorrhiza colonization of Deschampsia cespitosa ecotype Waryński at different soil depths. Environ Pollut 150:338–346

    Article  CAS  Google Scholar 

  • Hammer EC, Balogh-Brunstad Z, Jakobsen I, Olsson PA, Stipp SL, Rillig MC (2014) A mycorrhizal fungus grows on biochar and captures phosphorus from its surfaces. Soil Biol Biochem 77:252–260

    Article  CAS  Google Scholar 

  • Hammer EC, Forstreuter M, Rillig MC, Kohler J (2015) Biochar increases arbuscular mycorrhizal plant growth enhancement and ameliorates salinity stress. Appl Soil Ecol 96:114–121

    Article  Google Scholar 

  • Harvey OR, Herbert BE, Rhue RD, Kuo L-J (2011) Metal interactions at the biochar-water interface: energetics and structure-sorption relationships elucidated by flow adsorption microcalorimetry. Environ Sci Technol 45:5550–5556

    Article  CAS  Google Scholar 

  • Himmelbauer M (2004) Estimating length, average diameter and surface area of roots using two different image analyses systems. Plant Soil 260:111–120

    Article  CAS  Google Scholar 

  • Kachenko AG, Singh B (2006) Heavy metals contamination in vegetables grown in urban and metal smelter contaminated sites in Australia. Water Air Soil Pollut 169:101–123

    Article  CAS  Google Scholar 

  • Keller C, Rizwan M, Davidian J-C, Pokrovsky O, Bovet N, Chaurand P, Meunier J-D (2015) Effect of silicon on wheat seedlings (Triticum turgidum L.) grown in hydroponics and exposed to 0 to 30 μM Cu. Planta 241:847–860

    Article  CAS  Google Scholar 

  • Koske R, Gemma J (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–488

    Article  Google Scholar 

  • Lin A-J, Zhang X-H, Chen M-M, Qing C (2007) Oxidative stress and DNA damages induced by cadmium accumulation. J Environ Sci 19:596–602

    Article  CAS  Google Scholar 

  • Liu LZ, Gong ZQ, Zhang YL, Li PJ (2014) Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi. Ecotoxicology 23:1979–1986

    Article  CAS  Google Scholar 

  • Liu C, Liu F, Ravnskov S, Rubæk GH, Sun Z, Andersen MN (2017a) Impact of wood biochar and its interactions with mycorrhizal fungi, phosphorus fertilization and irrigation strategies on potato growth. J Agron Crop Sci 203:131–145

    Article  Google Scholar 

  • Liu M, Li Y, Cher YY, Deng SJ, Xiao Y (2017b) Effects of different fertilizers on growth and nutrient uptake of Lolium multiflorum grown in Cd-contaminated soils. Environ Sci Pollut Res 24:23363–23370

    Article  CAS  Google Scholar 

  • Liu L, Li J, Yue F, Yan X, Wang F, Bloszies S, Wang Y (2018) Effects of arbuscular mycorrhizal inoculation and biochar amendment on maize growth, cadmium uptake and soil cadmium speciation in Cd-contaminated soil. Chemosphere 194:495–503

    Article  CAS  Google Scholar 

  • Lux A, Martinka M, Vaculík M, White PJ (2010) Root responses to cadmium in the rhizosphere: a review. J Exp Bot 62:21–37

    Article  CAS  Google Scholar 

  • Mau A, Utami S (2014) Effects of biochar amendment and arbuscular mycorrhizal fungi inoculation on availability of soil phosphorus and growth of maize. J Degrade Min Lands Manage 1:69–74

  • Mehmood S, Rizwan M, Bashir S, Ditta A, Aziz O, Yong LZ, Dai Z, Akmal M, Ahmed W, Adeel M (2018) Comparative effects of biochar, slag and ferrous–Mn ore on lead and cadmium immobilization in soil. Bull Environ Contam Toxicol 100:286–292

    Article  CAS  Google Scholar 

  • Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Environ Sci Technol 42:741–775

    Article  CAS  Google Scholar 

  • NARC (2017) How many varieties have been developed by PARC and which are the varieties recommended for general cultivation? Pakistan Agricultural Research Council, Islamabad

    Google Scholar 

  • Nedelkoska TV, Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615

    Article  CAS  Google Scholar 

  • Ogar A, Sobczyk Ł, Turnau K (2015) Effect of combined microbes on plant tolerance to Zn–Pb contaminations. Environ Sci Pollut Res 22:19142–19156

    Article  CAS  Google Scholar 

  • Olsen SR (1954) Estimation of available phosphorus in soils by extraction with sodium bicarbonate. United States Department of Agriculture, Washington

    Google Scholar 

  • Ortas İ, Rafique M, Akpinar C, Kacar YA (2017) Growth media and mycorrhizal species effect on acclimatization and nutrient uptake of banana plantlets. Sci Hortic 217:55–60

    Article  CAS  Google Scholar 

  • Parker JS, Cavell AC, Dolan L, Roberts K, Grierson CS (2000) Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell 12:1961–1974

    Article  CAS  Google Scholar 

  • Paz-Ferreiro J, Lu H, Fu S, Méndez A, Gascó G (2014) Use of phytoremediation and biochar to remediate heavy metal polluted soils: a review. Solid Earth 5:65–75

    Article  Google Scholar 

  • Peng H, Gao P, Chu G, Pan B, Peng J, Xing B (2017) Enhanced adsorption of Cu (II) and Cd (II) by phosphoric acid-modified biochars. Environ Pollut 229:846–853

    Article  CAS  Google Scholar 

  • Polle A, Schützendübel A (2003) Heavy metal signalling in plants: linking cellular and organismic responses, plant responses to abiotic stress. Springer, Berlin, pp 187–215

    Google Scholar 

  • Qiao Y, Crowley D, Wang K, Zhang H, Li H (2015) Effects of biochar and arbuscular mycorrhizae on bioavailability of potentially toxic elements in an aged contaminated soil. Environ Pollut 206:636–643

    Article  CAS  Google Scholar 

  • Rajkovich S, Enders A, Hanley K, Hyland C, Zimmerman AR, Lehmann J (2012) Corn growth and nitrogen nutrition after additions of biochars with varying properties to a temperate soil. Biol Fertil Soils 48:271–284

    Article  CAS  Google Scholar 

  • Reimann C, Fabian K, Flem B (2019) Cadmium enrichment in topsoil: separating diffuse contamination from biosphere-circulation signals. Sci Total Environ 651:1344–1355

    Article  CAS  Google Scholar 

  • Rizwan M, Meunier J-D, Miche H, Keller C (2012) Effect of silicon on reducing cadmium toxicity in durum wheat (Triticum turgidum L. cv. Claudio W.) grown in a soil with aged contamination. J Hazard Mater 209:326–334

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Zia-ur-Rehman M, Hannan F, Keller C, Al-Wabel MI, Ok YS (2016a) Cadmium minimization in wheat: a critical review. Ecotoxicol Environ Saf 130:43–53

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Adrees M, Rizvi H, Zia-ur-Rehman M, Hannan F, Qayyum MF, Hafeez F, Ok YS (2016b) Cadmium stress in rice: toxic effects, tolerance mechanisms, and management: a critical review. Environ Sci Pollut Res 23:17859–17879

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ibrahim M, Zia-ur-Rehman M, Abbas T, Ok YS (2016c) Mechanisms of biochar-mediated alleviation of toxicity of trace elements in plants: a critical review. Environ Sci Pollut Res 23:2230–2248

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Zia-ur-Rehman M, Abbas Z, Hannan F (2017) Use of maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review. Environ Geochem Health 39:259–277

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Abbas T, Adrees M, Rehman MZ, Ibrahim M, Abbas F, Qayyum MF, Nawaz R (2018) Residual effects of biochar on growth, photosynthesis and cadmium uptake in rice (Oryza sativa L.) under Cd stress with different water conditions. J Environ Manage 206:676–683

  • Robert S, Torrie J, Dickey D (1997) Principles and procedures of statistics: a biometrical approach. McGraw-Hill, New York

    Google Scholar 

  • Sánchez ME, Lindao E, Margaleff D, Martínez O, Morán A (2009) Pyrolysis of agricultural residues from rape and sunflowers: production and characterization of bio-fuels and biochar soil management. J Anal Appl Pyrolysis 85:142–144

    Article  CAS  Google Scholar 

  • Sarwar N, Malhi SS, Zia MH, Naeem A, Bibi S, Farid G (2010) Role of mineral nutrition in minimizing cadmium accumulation by plants. J Sci Food Agric 90:925–937

    CAS  Google Scholar 

  • Šimonová E, Henselová M, Masarovičová E, Kohanová J (2007) Comparison of tolerance of Brassica juncea and Vigna radiata to cadmium. Biol Plant 51:488–492

    Article  Google Scholar 

  • Tanwir K, Akram MS, Masood S, Chaudhary HJ, Lindberg S, Javed MT (2015) Cadmium-induced rhizospheric pH dynamics modulated nutrient acquisition and physiological attributes of maize (Zea mays L.). Environ Sci Pollut Res 22:9193–9203

    Article  CAS  Google Scholar 

  • Teng Y, Wang XM, Li LN, Li ZG, Luo YM (2015) Rhizobia and their bio-partners as novel drivers for functional remediation in contaminated soils. Front Plant Sci 6:32

    Article  Google Scholar 

  • Tong H, Hu M, Li F, Liu C, Chen M (2014) Biochar enhances the microbial and chemical transformation of pentachlorophenol in paddy soil. Soil Biol Biochem 70:142–150

    Article  CAS  Google Scholar 

  • Torregroza-Espinosa AC, Martinez-Mera E, Castaneda-Valbuena D, Gonzalez-Marquez LC, Torres-Bejarano F (2018) Contamination level and spatial distribution of heavy metals in water and sediments of El Guajaro reservoir, Colombia. Bull Environ Contam Toxicol 101:61–67

    Article  CAS  Google Scholar 

  • Vithanage M, Rajapaksha AU, Zhang M, Thiele-Bruhn S, Lee SS, Ok YS (2015) Acid-activated biochar increased sulfamethazine retention in soils. Environ Sci Pollut Res 22:2175–2186

    Article  CAS  Google Scholar 

  • Wheal MS, Fowles TO, Palmer LT (2011) A cost-effective acid digestion method using closed polypropylene tubes for inductively coupled plasma optical emission spectrometry (ICP-OES) analysis of plant essential elements. Anal Methods 3:2854–2863

    Article  CAS  Google Scholar 

  • Wu F-B, Jing D, Jia G-X, Zheng S-J, Zhang G-P (2006) Genotypic difference in the responses of seedling growth and cd toxicity in rice (Oryza sativa L.). Agric Sci China 5:68–76

    Article  CAS  Google Scholar 

  • Wu S, Zhang X, Chen B, Wu Z, Li T, Hu Y, Sun Y, Wang Y (2016) Chromium immobilization by extraradical mycelium of arbuscular mycorrhiza contributes to plant chromium tolerance. Environ Exp Bot 122:10–18

    Article  CAS  Google Scholar 

  • Xu X, Cao X, Zhao L (2013) Comparison of rice husk- and dairy manure-derived biochars for simultaneously removing heavy metals from aqueous solutions: role of mineral components in biochars. Chemosphere 92:955–961

    Article  CAS  Google Scholar 

  • Xu C-Y, Hosseini-Bai S, Hao Y, Rachaputi RC, Wang H, Xu Z, Wallace H (2015) Effect of biochar amendment on yield and photosynthesis of peanut on two types of soils. Environ Sci Pollut Res 22:6112–6125

    Article  CAS  Google Scholar 

  • Yamato M, Okimori Y, Wibowo IF, Anshori S, Ogawa M (2006) Effects of the application of charred bark of Acacia mangium on the yield of maize, cowpea and peanut, and soil chemical properties in South Sumatra, Indonesia. Soil Sci Plant Nutr 52:489–495

    Article  CAS  Google Scholar 

  • Zhang C, Shan BQ, Zhu YY, Tang WZ (2018) Remediation effectiveness of Phyllostachys pubescens biochar in reducing the bioavailability and bioaccumulation of metals in sediments. Environ Pollut 242:1768–1776

    Article  CAS  Google Scholar 

  • Zhao B, Xu R, Ma F, Li Y, Wang L (2016) Effects of biochars derived from chicken manure and rape straw on speciation and phytoavailability of cd to maize in artificially contaminated loess soil. J Environ Manag 184:569–574

    Article  CAS  Google Scholar 

  • Zheng R, Chen Z, Cai C, Tie B, Liu X, Reid BJ, Huang Q, Lei M, Sun G, Baltrėnaitė E (2015) Mitigating heavy metal accumulation into rice (Oryza sativa L.) using biochar amendment—a field experiment in Hunan, China. Environ Sci Pollut Res 22:11097–11108

    Article  CAS  Google Scholar 

  • Zhou XB, Jia ZM, Wang DB (2018) Effects of limited phosphorus supply on growth, root morphology and phosphorus uptake in citrus rootstocks seedlings. Int J Agric Biol 20:431–436

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by TÜBİTAK under the program of Research Fellowship Programme for International Researchers [grant number 21514107–115.02-188888].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Muhammad Rizwan or Hassan Javed Chaudhary.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Elena Maestri

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 23 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafique, M., Ortas, I., Rizwan, M. et al. Effects of Rhizophagus clarus and biochar on growth, photosynthesis, nutrients, and cadmium (Cd) concentration of maize (Zea mays) grown in Cd-spiked soil. Environ Sci Pollut Res 26, 20689–20700 (2019). https://doi.org/10.1007/s11356-019-05323-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05323-7

Keywords

Navigation