Skip to main content
Log in

Inverse associations of bisphenol A and phthalate metabolites with serum bilirubin levels in Korean population

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bisphenol A (BPA) and phthalates are endocrine disruptors that can induce oxidative stress. Serum bilirubin has antioxidant properties and may serve as a biomarker of oxidative stress. The objective of this study was to explore the relationship of BPA and phthalates with serum bilirubin levels in a Korean population. Urinary concentrations of BPA and six phthalate [mono-n-butyl phthalate (MnBP), mono-iso-butyl phthalate (MiBP), mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP), mono-(2-ethyl-5- hydroxyhexyl) phthalate (MEHHP), mono-(2-ethyl-5-carboxypentyl) phthalate (MECPP), and mono-benzyl phthalate (MBzP)] were measured in 709 participants. Serum concentrations of BPA and three phthalate metabolites [MnBP, MiBP, and mono-(2-ethylhexyl) phthalate (MEHP)] were measured in 752 participants. After excluding missing variables, associations between above chemicals and serum bilirubin levels were analyzed using multivariate linear regression with age, sex, BMI, GGT, GOT, GPT, and alcohol intake adjustment. Participants were further stratified by sex. Among the urinary chemicals, BPA and four phthalate metabolites (MnBP, MEOHP, MEHHP and MECPP) were inversely associated with serum bilirubin levels (BPA: β = − 0.071, P < 0.0001; MnBP: β = − 0.055, P = 0.025; MEOHP: β = − 0.101, P < 0.0001; MEHHP: β = − 0.106, P < 0.0001; MECPP: β = − 0.052, P = 0.003). In a case of serum chemicals, only MiBP showed significantly positive association (β = 0.036, P = 0.016). After stratification by sex, the associations of urinary BPA remained both in male and female, of which urinary phthalates disappeared in female. The association of serum MiBP was disappeared after stratification. Urinary BPA and phthalate metabolites were inversely associated with serum bilirubin levels, whereas serum MiBP showed positive association with bilirubin. These results could provide clues for understanding the mechanisms of endocrine disruptor from oxidative stress to excretion from our body.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asimakopoulos AG, Xue J, De Carvalho BP, Iyer A, Abualnaja KO, Yaghmoor SS, Kumosani TA, Kannan K (2016) Urinary biomarkers of exposure to 57 xenobiotics and its association with oxidative stress in a population in Jeddah, Saudi Arabia. Environ Res 150:573–581

    Article  CAS  Google Scholar 

  • Bolner A, Micciolo R, Bosello O, Nordera GP (2016) A panel of oxidative stress markers in Parkinson's disease. Clin Lab 62:105–112

    Article  CAS  Google Scholar 

  • Calafat AM, Needham LL (2009) What additional factors beyond state-of-the-art analytical methods are needed for optimal generation and interpretation of biomonitoring data? Environ Health Perspect 117:1481–1485

    Article  CAS  Google Scholar 

  • Cao YF, Du Z, Zhu ZT, Sun HZ, Fu ZW, Yang K, Liu YZ, Hu CM, Dong PP, Gonzalez FJ, Fang ZZ (2017) Inhibitory effects of fifteen phthalate esters in human cDNA-expressed UDP-glucuronosyltransferase supersomes. Chemosphere 185:983–990

    Article  CAS  Google Scholar 

  • Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, Zoeller RT, Gore AC (2009) Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev 30:293–342

    Article  CAS  Google Scholar 

  • Dong R, Zhao S, Zhang H, Chen J, Zhang M, Wang M, Wu M, Li S, Chen B (2017a) Sex differences in the association of urinary concentrations of phthalates metabolites with self-reported diabetes and cardiovascular diseases in Shanghai adults. Int J Environ Res Public Health 14. https://doi.org/10.3390/ijerph14060598

  • Dong R, Zhou T, Chen J, Zhang M, Zhang H, Wu M, Li S, Zhang L, Chen B (2017b) Gender- and age-specific relationships between phthalate exposures and obesity in Shanghai adults. Arch Environ Contam Toxicol 73:431–441

    Article  CAS  Google Scholar 

  • Du Z, Cao YF, Li SN, Hu CM, Fu ZW, Huang CT, Sun XY, Liu YZ, Yang K, Fang ZZ (2018) Inhibition of UDP-glucuronosyltransferases (UGTs) by phthalate monoesters. Chemosphere 197:7–13

    Article  CAS  Google Scholar 

  • Fenichel P, Chevalier N, Brucker-Davis F (2013) Bisphenol A: an endocrine and metabolic disruptor. Ann Endocrinol (Paris) 74:211–220

    Article  CAS  Google Scholar 

  • Ferguson KK, Loch-Caruso R, Meeker JD (2012) Exploration of oxidative stress and inflammatory markers in relation to urinary phthalate metabolites: NHANES 1999-2006. Environ Sci Technol 46:477–485

    Article  CAS  Google Scholar 

  • Ferguson KK, McElrath TF, Chen YH, Mukherjee B, Meeker JD (2015) Urinary phthalate metabolites and biomarkers of oxidative stress in pregnant women: a repeated measures analysis. Environ Health Perspect 123:210–216

    Article  CAS  Google Scholar 

  • Franken C, Lambrechts N, Govarts E, Koppen G, Den Hond E, Ooms D, Voorspoels S, Bruckers L, Loots I, Nelen V, Sioen I, Nawrot TS, Baeyens W, Van Larebeke N, Schoeters G (2017) Phthalate-induced oxidative stress and association with asthma-related airway inflammation in adolescents. Int J Hyg Environ Health 220:468–477

    Article  CAS  Google Scholar 

  • Gassman NR (2017) Induction of oxidative stress by bisphenol A and its pleiotropic effects. Environ Mol Mutagen 58:60–71

    Article  CAS  Google Scholar 

  • Guo Y, Weck J, Sundaram R, Goldstone AE, Louis GB, Kannan K (2014) Urinary concentrations of phthalates in couples planning pregnancy and its association with 8-hydroxy-2′-deoxyguanosine, a biomarker of oxidative stress: longitudinal investigation of fertility and the environment study. Environ Sci Technol 48:9804–9811

    Article  CAS  Google Scholar 

  • Hanioka N, Kinashi Y, Tanaka-Kagawa T, Isobe T, Jinno H (2017) Glucuronidation of mono(2-ethylhexyl) phthalate in humans: roles of hepatic and intestinal UDP-glucuronosyltransferases. Arch Toxicol 91:689–698

    Article  CAS  Google Scholar 

  • ISO/IEC (2005) General requirements for the competence of testing and calibration laboratories

    Google Scholar 

  • Jiang HM, Fang ZZ, Cao YF, Hu CM, Sun XY, Hong M, Yang L, Ge GB, Liu Y, Zhang YY, Dong Q, Liu RJ (2013) New insights for the risk of bisphenol A: inhibition of UDP-glucuronosyltransferases (UGTs). Chemosphere 93:1189–1193

    Article  CAS  Google Scholar 

  • Johns LE, Ferguson KK, Meeker JD (2016) Relationships between urinary phthalate metabolite and bisphenol a concentrations and vitamin D levels in U.S. adults: National Health and Nutrition Examination Survey (NHANES), 2005-2010. J Clin Endocrinol Metab 101:4062–4069

    Article  CAS  Google Scholar 

  • Kim JH, Hong YC (2017) Increase of urinary malondialdehyde level by bisphenol a exposure: a longitudinal panel study. Environ Health 16:8

    Article  CAS  Google Scholar 

  • King CD, Rios GR, Green MD, Tephly TR (2000) UDP-glucuronosyltransferases. Curr Drug Metab 1:143–161

    Article  CAS  Google Scholar 

  • Koch HM, Calafat AM (2009) Human body burdens of chemicals used in plastic manufacture. Philos Trans R Soc Lond Ser B Biol Sci 364:2063–2078

    Article  CAS  Google Scholar 

  • Lee DH, Blomhoff R, Jacobs DR Jr (2004) Is serum gamma glutamyltransferase a marker of oxidative stress? Free Radic Res 38:535–539

    Article  CAS  Google Scholar 

  • Li WP, Wang YF, Gao J, Yu ML, Yu YY, Yao YQ (2014) In vitro evidence for endocrine-disrupting chemical (EDC)'s inhibition of drug metabolism. Afr Health Sci 14:185–188

    Article  CAS  Google Scholar 

  • Lin JP, O'Donnell CJ, Schwaiger JP, Cupples LA, Lingenhel A, Hunt SC, Yang S, Kronenberg F (2006) Association between the UGT1A1*28 allele, bilirubin levels, and coronary heart disease in the Framingham Heart Study. Circulation 114:1476–1481

    Article  CAS  Google Scholar 

  • Liu Y, Li M, Song Y, Liu X, Zhao J, Deng B, Peng A, Qin L (2018) Association of serum bilirubin with renal outcomes in Han Chinese patients with chronic kidney disease. Clin Chim Acta 480:9–16

    Article  CAS  Google Scholar 

  • Mikami T, Sorimachi M (2017) Uric acid contributes greatly to hepatic antioxidant capacity besides protein. Physiol Res 66:1001–1007

    CAS  Google Scholar 

  • Park C, Choi W, Hwang M, Lee Y, Kim S, Yu S, Lee I, Paek D, Choi K (2017) Associations between urinary phthalate metabolites and bisphenol A levels, and serum thyroid hormones among the Korean adult population - Korean National Environmental Health Survey (KoNEHS) 2012-2014. Sci Total Environ 584-585:950–957

    Article  CAS  Google Scholar 

  • Posnack NG (2014) The adverse cardiac effects of Di(2-ethylhexyl) phthalate and bisphenol A. Cardiovasc Toxicol 14:339–357

    Article  CAS  Google Scholar 

  • Rezg R, El-Fazaa S, Gharbi N, Mornagui B (2014) Bisphenol A and human chronic diseases: current evidences, possible mechanisms, and future perspectives. Environ Int 64:83–90

    Article  CAS  Google Scholar 

  • Sedha S, Kumar S, Shukla S (2015) Role of oxidative stress in male reproductive dysfunctions with reference to phthalate compounds. Urol J 12:2304–2316

    Google Scholar 

  • Sedlak TW, Snyder SH (2004) Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 113:1776–1782

    Article  Google Scholar 

  • Silva MJ, Barr DB, Reidy JA, Kato K, Malek NA, Hodge CC, Hurtz D 3rd, Calafat AM, Needham LL, Brock JW (2003) Glucuronidation patterns of common urinary and serum monoester phthalate metabolites. Arch Toxicol 77:561–567

    Article  CAS  Google Scholar 

  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    Article  CAS  Google Scholar 

  • Vitek L (2017) Bilirubin and atherosclerotic diseases. Physiol Res 66:S11–S20

    CAS  Google Scholar 

  • Weng TI, Chen MH, Lien GW, Chen PS, Lin JC, Fang CC, Chen PC (2017) Effects of gender on the Association of Urinary Phthalate Metabolites with thyroid hormones in children: a prospective cohort study in Taiwan. Int J Environ Res Public Health 14. https://doi.org/10.3390/ijerph14020123

  • Yang YJ, Hong YC, Oh SY, Park MS, Kim H, Leem JH, Ha EH (2009) Bisphenol A exposure is associated with oxidative stress and inflammation in postmenopausal women. Environ Res 109:797–801

    Article  CAS  Google Scholar 

  • Zhang T, Xue J, Gao CZ, Qiu RL, Li YX, Li X, Huang MZ, Kannan K (2016) Urinary concentrations of bisphenols and their association with biomarkers of oxidative stress in people living near E-waste recycling facilities in China. Environ Sci Technol 50:4045–4053

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are extremely grateful to the staff of the Korean Medical Institute (KMI, Seoul, Korea) health examination centers who recruited our participants.

Source of funding

This work was supported by a grant (18162MFDS121) from the Ministry of Food and Drug Safety, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Ha Jee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Research involving human participants

The Institutional Review Board of Yonsei University approved this study protocol (No. 4–2017-1078).

Informed consent

This cross-sectional study involves human and signed written consent form was obtained from all participants from 2015 to 2016.

Additional information

Responsible editor: Philippe Garrigues

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1241 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y., Lee, S.J., Jeon, J. et al. Inverse associations of bisphenol A and phthalate metabolites with serum bilirubin levels in Korean population. Environ Sci Pollut Res 26, 26685–26695 (2019). https://doi.org/10.1007/s11356-019-05205-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-019-05205-y

Keywords

Navigation