Skip to main content
Log in

Physiological characterization of common bean (Phaseolus vulgaris L.) under abiotic stresses for breeding purposes

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the Brazilian wet and dry seasons, common beans (Phaseolus vulgaris L.) are grown under rainfed conditions with unexpected episodes of drought and high temperatures. The objective of this study was to evaluate the physiological mechanisms associated with drought adaptation traits in landraces and line/cultivars of beans from the Andean and Mesoamerican gene pools. Twenty-five genotypes, contrasting in terms of drought tolerance, were evaluated in a phenotyping platform under irrigated and rainfed conditions. Agronomic and physiological parameters such as grain yield, shoot structures, gas exchange, water potential, and osmotic adjustment were evaluated. The stress intensity was estimated to be 0.57, and the grain yield reduction ranged from 22 to 89%. Seven accessions, representative of the Andean and Mesoamerican germplasm (CF 200012, CF 240056, CF 250002, CF 900004, CNF 4497, CNF 7382, and SEA 5), presented superior performance in grain yield with and without stresses. The physiological responses under abiotic stresses were highly variable among the genotypes, and two Mesoamerican accessions (CF 200012 and SEA 5) showed more favorable adaptive responses. As the main secondary physiological traits, gas exchange and osmotic adjustment should be evaluated together with the grain yield to increase the selection efficiency of abiotic stresses-tolerant common bean lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta-Gallegos JA, Adams MW (1991) Plant traits and yield stability of dry bean (Phaseolus vulgaris L.) cultivars under drought stress. J Agric Sci 117:213–219

    Article  Google Scholar 

  • Ahuja I, de Vos RC, Bones AM, Hall RD (2010) Plant molecular stress responses face climate change. Trends Plant Sci 15:664–674

    Article  CAS  Google Scholar 

  • Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Sparovek G (2013) Koppen’s climate classification map for Brazil. Meteorol Z 22:711–728

    Article  Google Scholar 

  • Ashraf M, Harris JC (2013) Photosynthesis under stressful environments: an overview. Photosynthetica 51(2):163–190

    Article  CAS  Google Scholar 

  • Bajji M, Lutts S, Kinet JM (2001) Physiological changes after exposure to and recovery from polyethylene glycol-induced water deficit in roots and leaves of durum wheat (Triticum durum Desf.) cultivars differing in drought resistance. J Plant Physiol 157:100–108

    Article  Google Scholar 

  • Beck EH, Fettig S, Knake C, Hartig K, Bhattarai T (2007) Specific and unspecific responses of plants to cold and drought stress. J Biosci 32:501–510

    Article  CAS  Google Scholar 

  • Beebe SE, Rao IM, Cajiao I, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592

    Article  Google Scholar 

  • Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA (2013) Phenotyping common beans for adaptation to drought. Front Plant Physiol 4:1–20

    Google Scholar 

  • Benincasa MMP (2003): Análise de crescimento de plantas: noções básicas. Jaboticabal: FUNEP, Breazil. (in Portuguese)

  • Bergonci JI, Bergamaschi H, Berlato MA, Santos AO (2000) Potencial da água na folha como um indicador de déficit hídrico em milho. Pesq Agrop Brasileira 35:1531–1540

    Article  Google Scholar 

  • Bitocchi E, Bellucci E, Giardini A, Rau D, Rodriguez M, Biagetti E, Santilocchi R, Spagnoletti Zeuli P, Gioia T, Logozzo G, Attene L, Nanni L, Papa R (2013) Molecular analysis of the parallel domestication of the common bean (Phaseolus vulgaris) in Mesoamerica and the Andes. New Phytol 197:300–313

    Article  CAS  Google Scholar 

  • Carvalho FP, França AC, Souza BP, Fialho CMT, Santos JB, Silva AA (2014) Water use efficiency by coffee arabica after glyphosate application. Acta Scientiarum 3(3):373–377

    Article  Google Scholar 

  • Chen D, Wang S, Cao B, Cao D, Leng G, Li H, Yin L, Shan L, Deng X (2016) Genotypic variation in growth and physiological response to drought stress and re-watering reveals the critical role of recovery in drought adaptation in maize seedlings. Front Plant Sci 6:1241

    Google Scholar 

  • Cuéllar-Ortiz SM, Arrieta-Montiel MP, Acosta-Gallegos J, Covarrubias AA (2008) Relationship between carbohydrate partitioning and drought resistance in common bean. Plant Cell Environment 31:1399–1409

    Article  CAS  Google Scholar 

  • Embrapa Arroz e Feijão (2016) Dados de conjuntura da produção de feijão (Phaseolus vulgaris L.) no Brasil (1985–2014). Available at http://www.cnpaf.embrapa.br/socioeconomia/index.htm. Accessed 1 July 2016. (in Portuguese)

  • FAO (2016) International Year of Pulses – Nutritious seeds for a sustainable future. Available at http://www.fao.org/pulses-2016/en/. Accessed 16 June 2016

  • FAO-WATER (2016) Land and water division. Available at http://www.fao.org/nr/water/. Accessed 10 August 2016

  • Feitosa, C (2016) Área de cultivo de soja no Brasil pode diminuir 39% até 2040. Available at http://www.observatoriodoclima.eco.br/area-de-cultivo-de-soja-no-brasil-pode-diminuir-39-ate-2040/. Accessed 10 August 2016. (in Portuguese)

  • Ferreira DF (2011) Sisvar: a computer statistical analysis system. Ciênc Agrotecnol 35(6):1039–1042

    Article  Google Scholar 

  • Fischer RA, Maurer R (1978) Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust J Agric Res 29:897–912

    Article  Google Scholar 

  • Georgii E, Jin M, Zhao J, Kanawati B, Schmitt-Kopplin P, Albert A, Barbro Winkler J, Schäffner AR (2017) Relationships between drought, heat and air humidity responses revealed by transciptome-metabolome co-analysis. BMC Plant Biol 17:120

    Article  Google Scholar 

  • Graham HP, Ranalli P (1997) Common bean (Phaseolus vulgaris L.). Field Crop Res 53:131–146

    Article  Google Scholar 

  • Guimarães CM, Stone LF, Del Peloso MJ, Oliveira JP (2011) Genótipos de feijoeiro comum sob deficiência hídrica. Rev Bras Engenharia Agrícola e Ambiental 15:649–656. (in Portuguese)

    Article  Google Scholar 

  • Heinemann AB, Ramirez-Villega J, Souza TLPO, Didonet AD, di Stefano JG, Boote KJ, Jarvis A (2016) Drought impact on rainfed common bean production areas in Brazil. Agric Forest Meteorol 225:57–74

    Article  Google Scholar 

  • Jin R, Wang Y, Liu R, Gou J, Chan A (2016) Physiological and metabolic changes of purslane (Portulaca oleracea L.) in response to drought, heat, and combined stresses. Front Plant Sci 6:1–11

    CAS  Google Scholar 

  • Kahle D, Wickham H (2013) ggmap: spatial visualization with ggplot2. R Journal 5:144–161

    Google Scholar 

  • Konsens I, Ofir M, Kigel J (1991) The effect of temperature on the production and abscission of flowers and pods in snap bean (Phaseolus vulgaris L.). Ann Bot 67:391–399

    Article  Google Scholar 

  • Lanna AC, Mitsuzono ST, Terra TGR, Vianello RP, Carvalho MAF (2016) Physiological characterization of common bean (Phaseolus vulgaris L.) genotypes water-stress, induced with contrasting response towards drought. Aust J Crop Sci 10:1–6

    Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ 25:275–294

    Article  CAS  Google Scholar 

  • Lawson T, Blatt MR (2014) Stomatal size, speed, and responsiveness impact on photosynthesis and water use efficiency. Plant Physiol 164:1556–1570

    Article  CAS  Google Scholar 

  • Lesk C, Rowhani P, Ramankutty N (2016) Influence of extreme weather disasters on global crop production. Nature 529:84–87

    Article  CAS  Google Scholar 

  • Li S, Yu X, Cheng Z, Yu X, Ruan M, Li W, Peng M (2017) Global gene expression analysis reveals crosstalk between response mechanisms to cold and drought stresses in cassava seedlings. Front Plant Sci 8:1259

    Article  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  Google Scholar 

  • Mamidi S, Rossi M, Moghaddam SM, Annam D, Lee R, Papa R, McClean PE (2013) Demographic factors shaped diversity in the two gene pools of wild common bean Phaseolus vulgaris L. Heredity 110:267–276

    Article  CAS  Google Scholar 

  • McClean PE, Burridge JC, Beebe S, Rao IM, Porch TG (2011) Crop improvement in the era of climate change: an integrated, multi-disciplinary approach for common bean (Phaseolus vulgaris). Funct Plant Biol 38:927–933

    Article  Google Scholar 

  • Mishra S, Kumar S, Saha B, Awasthi J, Dey M, Panda SK, Sahoo L (2016) Crosstalk between salt, drought, and cold stress in plants: toward genetic engineering for stress tolerance. In: Abiotic Stress Response in Plants, 1. ed. New Delhi, India

  • Mohamed MF, Schmitz-Eiberger N, Keutgen N, Noga G (2005) Comparative drought postponing and tolerance potentials of two tepary bean lines in relation to seed yield. Afr Crop Sci J 13:49–60

    Google Scholar 

  • Monterroso VA, Wien HC (1990) Flower and pod abscission due to heat stress in beans. J Am Soc Hortic Sci 115:631–634

    Google Scholar 

  • Nakano H, Momonoki T, Miyashige T, Otsuka H, Hanada T, Sugimoto A, Nakagawa H, Matsuoka M, Terauchi T, Kobayashi M, Oshiro M, Yasuda K, Vanichwattanarumruk N, Choechuen S, Boonmalison D (1997) ‘Haibushi’: a new variety of snap bean tolerant to heat stress. Japan International Research Center for Agricultural Sciences Journal 5:1–12

    Google Scholar 

  • Nielsen DC, Nelson NO (1998) Black bean sensitivity to water stress at various growth stages. Crop Sci 38:422–427

    Article  Google Scholar 

  • Omae H, Kumar A, Egawa Y, Kashiwaba K, Shono M (2005) Midday drop of leaf water content related to drought tolerance in snap bean (Phaseolus vulgaris L.). Plant Prod Sci 8:465–467

    Article  Google Scholar 

  • Omae H, Kumar A, Shono M (2012) Adaptation to high temperature and water deficit in the common bean (Phaseolus vulgaris L.) during the reproductive period. J Bot 2012:1–7

    Article  Google Scholar 

  • Petry N, Boy E, Wirth JP, Hurrell RF (2015) Review: the potential of the common bean (Phaseolus vulgaris) as a vehicle for iron biofortification. Nutrients 7:1144–1173

    Article  CAS  Google Scholar 

  • Polanía JA, Rao IM, Mejía S, Beebe SE, Cajiao C (2012) Morpho-physiological characteristics of common bean (Phaseolus vulgaris L.) related to drought adaptation. Acta Agron 61:179–187

    Google Scholar 

  • Polanía JA, Poschenrieder C, Beebe S, Rao IM (2016) Effective use of water and increased dry matter partitioned to grain contribute to yield of common bean improved for drought resistance. Front Plant Sci 7:1–10

    Article  Google Scholar 

  • Ramirez-Vallejo P, Kelly JD (1998) Traits related to drought resistance in common bean. Euphytica 99:127–136

    Article  Google Scholar 

  • Rao IM, Beebe S, Polanía J, Ricaurte J, Cajiao C, Polanía J, Garcia R (2004) Evaluation of drought resistance and associated traits in advanced lines. In: Annual Report 2004. Project IP-1: Bean Improvement for the Tropics, Cali, Colombia (CIAT). pp. 5–13

  • Rao IM, Beebe SE, Polanía J, Grajales MA, Cajiao C, García R, Ricaurte J, Rivera M (2009) Physiological basis of improved drought resistance in common bean: The contribution of photosynthate mobilisation to grain. Paper presented at Interdrought III: The 3rd International Conference on Integrated Approaches to Improve Crop Production under Drought-Prone Environments, Shanghai, China

  • Rao IM, Beebe S, Polanía J, RICAURTE J, CAJIAO C, GARCIA R, RIVERA M (2013) Can tepary bean be a model for improvement of drought resistance in common bean? Afr Crop Sci J 21:265–281

    Google Scholar 

  • Ribeiro RV, Santos MG, Souza GM, Machado EM, Oliveira RF, Angelocci LR, Pimentel C (2004) Environmental effects on photosynthetic capacity of bean genotypes. Pesq Agrop Brasileira 39:615–623

    Article  Google Scholar 

  • Ribeiro RV, Santos MG, Machado EC, Oliveira RF (2008) Photochemical heat-shock response in common bean leaves as affected by previous water deficit. Russ J Plant Physiol 55:350–358

    Article  CAS  Google Scholar 

  • Rosales MA, Ocampo E, Rodríguez-Valentín R, Olvera-Carrillo Y, Acosta-Gallegos JA, Covarrubias AA (2012) Physiological analysis of common bean (Phaseolus vulgaris L.) cultivars uncovers characteristics related to terminal drought resistance. Plant Physiol Biochem 56:24–34

    Article  CAS  Google Scholar 

  • Schneider KA, Rosales-Serna R, Ibarra-Perez F, Cazares-Enriquez B, Acosta Gallegos JA, Ramirez-Vallejo P, Wassimi N, Kelly JD (1997) Improving common bean performance under drought stress. Crop Sci 37:43–50

    Article  Google Scholar 

  • Scholander PF, Hammel HT, Brandstreet ED, Hemmingsen EA (1965) Sap pressure in vascular plants. Science 148:339–346

    Article  CAS  Google Scholar 

  • Scott AJ, Knott M (1974) A cluster analysis method form grouping means in the analysis of variance. Biometrics 30:507–512

    Article  Google Scholar 

  • Shi G, Zhu-Ge F, Liu Z, Le L (2014) Phosynthetic responses and acclimation of two castor bean cultivars to repeated drying-wetting cycles. J Plant Interact 9(1):783–790

    Article  CAS  Google Scholar 

  • Sponchiado BN, White JW, Castillo JA, Jones PG (1989) Root growth of four common bean cultivars in relation to drought tolerance in environments with contrasting soil types. Exp Agric 25:249–257

    Article  Google Scholar 

  • Subbarao GV, Johansen AC, Slinkard RC, Rao IM, Saxena NP, Chauhan YS (1995) Strategies for improving drought resistance in grain legumes. Crit Rev Plant Sci 14:469–523

    Article  Google Scholar 

  • Taiz L, Zeiger E. (2009) Fisiologia Vegetal. 4th ed. Porto Alegre: Artmed. Berasil. (in Poretuguese)

  • Tardieu F (2013) Plant response to environmental conditions: assessing potential production, water demand, and negative effects of water deficit. Front Physiol 4:1–11

    Article  CAS  Google Scholar 

  • Tohme J, Jones P, Beebe S, Iwanaga M (1995) The combined use of agroecological and characterization data to establish the CIAT Phaseolus vulgaris core collection. In: Core collections of plant genetic resources. John Wiley and Sons, Chichester, UK. pp. 95–107

  • Vieira C, Paula JR PTJ, Borém A (2006) Feijão. 1th ed. Viçosa: UFV, Brazil. (in Portuguese)

  • Wilhite DA, Sivakumar MVK, Pulwarty R (2014) Managing drought risk in a changing climate: the role of National Drought Policy. Weather and Climate Extreme 3:4–13

    Article  Google Scholar 

  • Yang ZB, Eticha D, Rotter B, Rao IM, Horst WJ (2011) Physiological and molecular analysis of polyethylene glycol-induced reduction of aluminium accumulation in the root tips of common bean (Phaseolus vulgaris). New Phytol 192:99–113

    Article  CAS  Google Scholar 

  • Zandalinas SI, Mittler R, Balfagón D, Arbona V, Gómez-Cadenas A (2017) Plant adaptations to the combination of drought and high temperatures. Minireview. Physiol Plant

  • Zhu Y-N, Shi D-Q, Ruan M-B, Zhang L.L., Meng Z.H., Liu J., Yang W.C. (2013) Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). Sun M, ed. PLoS One 8(11): e80218

Download references

Funding

This research received financial support from the Brazilian Agricultural Research Corporation (EMBRAPA - 02.12.12.005.00.00).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Cristina Lanna.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lanna, A.C., Silva, R.A., Ferraresi, T.M. et al. Physiological characterization of common bean (Phaseolus vulgaris L.) under abiotic stresses for breeding purposes. Environ Sci Pollut Res 25, 31149–31164 (2018). https://doi.org/10.1007/s11356-018-3012-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-3012-0

Keywords

Navigation