Skip to main content
Log in

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) reduction by granular zero-valent iron in continuous flow reactor

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Wastewater streams containing hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) are subject to regulatory discharge regulations that require processing through industrial waste treatment. Thus, the development of easy-to-apply technologies for the treatment of RDX-laden wastewater streams is imperative. In the present study, the reduction of RDX by granular zero valent iron (GZVI) in batch and column experiments was investigated. Preliminary batch tests conducted under both oxic and anoxic conditions showed that after 3.0 h of reaction with GZVI, RDX was mainly converted to formaldehyde (CH2O), nitrate (NO3), and ammonium (NH4+). Column filtration tests showed that pretreatment of the GZVI media with acid wash and low influent pH (4.0 ± 0.1) achieved 99% removal of RDX up to 5000 bed volume. BOD tests carried out on the post-treatment streams showed increased biodegradability of the treated wastewater, leading to a lower environmental impact for the final waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agrawal A, Tratnyek PG (1996) Reduction of nitro aromatic compounds by zero-valent iron metal. Environ Sci Technol 30(1):153–160

    Article  CAS  Google Scholar 

  • Atikovic E, Suidan MT, Maloney SW (2008) Anaerobic treatment of army ammunition production wastewater containing perchlorate and RDX. Chemosphere 72(11):1643–1648

    Article  CAS  Google Scholar 

  • Bruhn C, Lenke H, Knackmuss HJ (1987) Nitrosubstituted aromatic compounds as nitrogen source for bacteria. Appl Environ Microbiol 53(1):208–210

    CAS  Google Scholar 

  • Chen Y, Hong L, Han W, Wang L, Sun X, Li J (2011) Treatment of high explosive production wastewater containing RDX by combined electrocatalytic reaction and anoxic-oxic biodegradation. Chem Eng J 168(3):1256–1262

    Article  CAS  Google Scholar 

  • Cheng SF, Wu SC (2000) The enhancement methods for the degradation of TCE by zero-valent metals. Chemosphere 41:1263–1270

    Article  CAS  Google Scholar 

  • Comfort SD, Shea PJ, Machacek TA, Satapanajaru T (2003) Pilot-scale treatment of RDX-contaminated soil with zerovalent iron. J Enviro Qual 32:1717–1725

    Article  CAS  Google Scholar 

  • Crane RA, Scott TB (2012) Nanoscale zero-valent iron: future prospects for an emerging water treatment technology. J Hazard Mater 211:112–125

    Article  CAS  Google Scholar 

  • Doong RA, Chen KT, Tsai HC (2003) Reductive dechlorination of carbon tetrachloride and tetrachloroethylene by zerovalent silicon-iron reductants. Environ Sci Technol 37(11):2575–2581

    Article  CAS  Google Scholar 

  • Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31:111–122

    Article  CAS  Google Scholar 

  • Gavaskar A, Tatar L, Condit W (2005) Cost and performance report nanoscale zero-valent iron technologies for source remediation (no. CR-05-007-ENV), Naval facilities engineering service center port, Hueneme, Ca

  • Ghauch A (2001) Degradation of benomyl, picloram, and dicamba in a conical apparatus by zero-valent iron power. Chemosphere 43:1109–1117

    Article  CAS  Google Scholar 

  • Gu B, Phelps TJ, Liang L, Dickey MJ, Roh Y, Kinsall BL, Palumbo AV, Jacobs GK (1999) Biogeochemical dynamics in zero-valent iron columns: implications for permeable reactive barriers. Environ Sci Technol 33:2170–2177

    Article  CAS  Google Scholar 

  • Hawari J, Halasz A, Sheremata T, Beaudet S, Groom C, Paquet L, Thiboutot S (2000) Characterization of metabolites during biodegradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) with municipal anoxic sludge. Appl Environ Microbiol 66(6):2652–2657

    Article  CAS  Google Scholar 

  • Hundal LS, Singh J, Bier EL, Shea PJ, Comfort SD, Powers WL (1997) Removal of TNT and RDX from water and soil using iron metal. Environ Pollut 97(1–2):55–64

    Article  CAS  Google Scholar 

  • Lavine BK, Auslander G, Ritter J (2001) Polarographic studies of zero valent iron as a reductant for remediation of nitroaromatics in the environment. Microchem J 70(2):69–83

    Article  CAS  Google Scholar 

  • Li XQ, Elliott DW, Zhang WX (2006) Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci 31(4):111–122

    Article  CAS  Google Scholar 

  • Lingamdinne LP, Roh H, Choi YL, Koduru JR, Yang JK, Chang YY (2015) Influencing factors on sorption of TNT and RDX using rice husk biochar. J Ind Eng Chem 32:178–186

    Article  CAS  Google Scholar 

  • Liu YQ, Majetich SA, Tilton RD, Sholl DS, Lowry GV (2005) TCE dechlorination rates, pathways, and efficiency of nanoscale iron particles with different properties. Environ Sci Technol 39(5):1338–1345

    Article  CAS  Google Scholar 

  • Ma L, Zhang WX (2008) Enhanced biological treatment of industrial wastewater with bimetallic zero-valent Iron. Environ Sci Technol 42(15):5384–5389

    Article  CAS  Google Scholar 

  • Matheson LJ, Tratnyek PG (1994) Reductive dehalogenation of chlorinated methanes by iron metal. Environ Sci Technol 28(12):2045–2053

    Article  CAS  Google Scholar 

  • Naja G, Halasz A, Thiboutot S, Ampleman G, Hawari J (2008) Degradation of hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine (RDX) using zero valent iron nanoparticles. Environ Sci Technol 42(12):4364–4370

    Article  CAS  Google Scholar 

  • Noubactep C (2008) A critical review on the process of contaminant removal in Fe0–H2O systems. Environ Technol 29(8):909–920

    Article  CAS  Google Scholar 

  • Keenan CR, Sedlak DL (2008) Factors affecting the yield of oxidants from the reaction of monoparticulate zero-valent iron and oxygen. Environ Sci Technol 42(4):1262–1267

    Article  CAS  Google Scholar 

  • Kitcher E, Braida W, Koutsospyros A, Pavlov J, Su TL (2017) Characteristics and products of the reductive degradation of 3-nitro-1,2,4-triazol-5-one (NTO) and 2,4-dinitroanisole (DNAN) in a Fe-Cu bimetal system. Environ Sci Pollut Res 24:2744–2753

    Article  CAS  Google Scholar 

  • Knackmuss HJ (1996) Basic knowledge and perspectives of bioelimination of xenobiotic compounds. J Biotech 51:287–295

    Article  CAS  Google Scholar 

  • Koutsospyros A, Pavlov J, Fawcett J, Strickland D, Smolinski B, Braida W (2012) Degradation of high energetic and insensitive munitions compounds by Fe/cu bimetal reduction. J Hazard Mater 219-220:75–81

    Article  CAS  Google Scholar 

  • Oh BT, Just CL, Alvarez PJ (2001) Hexahydro-1, 3, 5-trinitro-1, 3, 5-triazine mineralization by zero valent iron and mixed anoxic cultures. Environ Sci Technol 35(21):4341–4346

    Article  CAS  Google Scholar 

  • Oh SY, Cha DK, Chiu PC, Kim BJ (2004) Conceptual comparison of pink water treatment technologies: granular activated carbon, anaerobic fluidized bed, and zero-valent iron-Fenton process. Water Sci Technol 49(5–6):129–136

    Article  CAS  Google Scholar 

  • Oh SY, Cha DK, Chiu PC, Kim BJ (2006) Zero-valent iron treatment of RDX-containing and perchlorate-containing wastewaters from an ammunition-manufacturing plant at elevated temperatures. Water Sci Technol 54(10):47–53

    Article  CAS  Google Scholar 

  • Oh SY, Chiu PC, Kim BJ, Cha DK (2005) Zero-valent iron pretreatment for enhancing the biodegradability of RDX. Water Res 39(20):5027–5032

    Article  CAS  Google Scholar 

  • Oh SY, Kang SG, Chiu PC (2010) Degradation of 2, 4-dinitrotoluene by persulfate activated with zero-valent iron. Sci Total Environ 408(16):3464–3468

    Article  CAS  Google Scholar 

  • Rajagopal C, Kapoor JC (2001) Development of adsorptive removal process for treatment of explosives contaminated wastewater using activated carbon. J Hazard Mater 87(1–3):73–98

    Article  CAS  Google Scholar 

  • Roh H, Yu MR, Yakkala K, Koduru JR, Yang JK, Chang YY (2015) Removal studies of cd (II) and explosive compounds using buffalo weed biochar-alginate beads. J Ind Eng Chem 26:226–233

    Article  CAS  Google Scholar 

  • Sheremata TW, Halasz A, Paquet L, Thiboutot S, Ampleman G, Jalal H (2001) The fate of the cyclic nitramine explosive RDX in natural soil. Environ Sci Technol 35(6):1037–1040

    Article  CAS  Google Scholar 

  • Singh J, Comfort SD, Shea PJ (1998) Remediating RDX-contaminated water and soil using zero-valent iron. J Enviro Qual 27(5):1240–1245

    Article  CAS  Google Scholar 

  • Summers WR (1990) Characterization of formaldehyde and formaldehyde-releasing preservatives by combined reversed phase cation-exchange high-performance liquid chromatography with postcolumn derivatization using Nash’s reagent. Anal Chem 62:1397–1402

    Article  CAS  Google Scholar 

  • Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332

    Article  CAS  Google Scholar 

  • Wanaratna P, Christodoulatos C, Sidhoum M (2006) Kinetics of RDX degradation by zero-valent iron (ZVI). J Hazard Mater 136(1):68–74

    Article  CAS  Google Scholar 

  • Wildman MJ, Alvarez PJJ (2001) RDX degradation using an integrated Fe(0)-microbial treatment approach. Water Sci Technol 43(2):25–33

    Article  CAS  Google Scholar 

  • Wujcik WJ, Lowe WL, Marks PJ, Sisk WE (1992) Granular activated carbon pilot treatment studies for explosives removal from contaminated groundwater. Environ Prog 11(3):178–189

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang Meng.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Terracciano, A., Ge, J., Koutsospyros, A. et al. Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) reduction by granular zero-valent iron in continuous flow reactor. Environ Sci Pollut Res 25, 28489–28499 (2018). https://doi.org/10.1007/s11356-018-2871-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-2871-8

Keywords

Navigation