Skip to main content

Advertisement

Log in

Trace element contaminants in mineral fertilizers used in Iran

  • 13th IHPA Forum and selected studies on POPs
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The application of mineral fertilizers which have contaminants of trace elements may impose concern regarding the entry and toxic accumulation of these elements in agro-ecosystems. In this study, 57 mineral fertilizers (nitrogen, potassium, phosphate, and compound fertilizers) distributed in Iran were analyzed for their contents of Cd, Co, Cr, Cu, Mn, Ni, Pb, Zn, and Fe. The results revealed that the contents of these trace elements varied considerably depending on the type of the element and the fertilizer. Among these elements, Fe displayed the highest average content, whereas Cd showed the lowest. Generally, the trace element contents in P-containing fertilizers were higher than those in nitrogen and potassium fertilizers. The mean values of trace elements (mg kg−1) in P-containing fertilizers were 4.0 (Cd), 5.5 (Co), 35.7 (Cr), 24.4 (Cu), 272 (Mn), 14.3 (Ni), 6.0 (Pb), 226 (Zn), and 2532 (Fe). Comparing trace element contents to limit values set by the German Fertilizer Ordinance showed that the mean contents of potentially toxic trace elements, such as Cd and Pb, were lower than their limit values in all groups of fertilizers. On the other hand, while a number of fertilizers contained a high content of some essential trace elements, particularly Fe, they were not labeled as such.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agricultural and veterinary chemicals (control of use) (fertilisers) regulations (2015) S.R. No. 108/2015.Part 3-standard for maximum levels of contaminants in fertilisers. Available: http://classic.austlii.edu.au/au/legist/vic/consol_reg/aavcour

  • AOAC (2005) Official method of analysis, 18th edn. V.A Association of Official Analytical Chemist, Arlibton

    Google Scholar 

  • Azeem B, KuShaari K, Man ZB, Basit A, Thanh TH (2014) Review on materials and methods to produce controlled release coated urea fertilizer. J Control Release 181:11–21

    Article  CAS  Google Scholar 

  • Bartlett R, James B (1979) Behavior of chromium in soils: III. Oxidation. J Environ Qual 8:31–35

    Article  CAS  Google Scholar 

  • Bergs C-B (2014) Novelle der Klärschlammverordnung (AbfKlärV) und Übelegungen des BMUB zu einer Phosphor-Rückgewinnungsverordnung. Bundesministerium für Umwelt, Naturschutz, Bau und Reaktorsicherheit

  • Cadmium Working Group (2008) Report one: cadmium in New Zealand agriculture. Ministry of Agriculture and Forestry, Wellington

    Google Scholar 

  • Carnelo LGL, de Miguez SR, Marbán L (1997) Heavy metals input with phosphate fertilizers used in Argentina. Sci Total Environ 204:245–250

    Article  Google Scholar 

  • Cesur H, Kartal ME (2007) Determination of cadmium levels in agricultural areas of Çarşamba and Bafra Plains. Environ Monit Assess 132:165–169

    Article  CAS  Google Scholar 

  • CFIA (2017) Safety guidelines for fertilizers and supplements. Trade memorandum T-4-93, Canada Food Inspection Agency. Available: http://www.Inspection.gc.ca/plants/fertilizers/trade-memoranda/t-4-93/eng/1305611387327

  • Chaney RL (2012) Food safety issues for mineral and organic fertilizers. Adv Agron 117:51–116

    Article  CAS  Google Scholar 

  • Chen W, Chang AC, Wu L (2007) Assessing long-term environmental risks of trace elements in phosphate fertilizers. Ecotoxicol Environ Saf 67:48–58

    Article  CAS  Google Scholar 

  • DüMV (2008) Düngmittelverordnung (DüMV) v. 16.12.2008, BGB1. I, Nr. 60, S. 2524-2581, geändert am 03.11.2004, BGB1 I, S. 2767

  • European Parliament: A8-0270/2017. Commission staff working document impact assessment accompanying the document proposal for a regulation of the European parliament and of the council laying down rules on the making available on the market of CE marked fertilizing products and amending regulations (EC) No. 1107/2009 (COM(2016)0157-C8–0123/2016–2016/0084 (COD)). Available: http://www.europarl.europa.eu/sides/getDoc.do?type=REPORT&refer-ence=A8-2017-0270&language=EN

  • European Parliament: P-001120/2017. Annex II: Outcome of a member states and industry consultation on limits for cadmium in national phosphate fertilizers. http://www.europarl.europa.eu/sides/getAllAnswers.do?reference=P-2017-001120 & language =EN

  • Frank R, Ishida K, Suda P (1976) Metals in agricultural soils of Ontario. Can J Soil Sci 56:181–196

    Article  CAS  Google Scholar 

  • Goyer R, Golub M, Choudhury H, Hughes M, Kenyon E, Stifelman M (2004) Issue paper on the human health effects of metals. US Environmental Protection Agency, Risk Assessment Forum, Washington, DC

    Google Scholar 

  • Grant CA (2011) Influence of phosphate fertilizer on cadmium in agricultural soils and crops. Pedologist/Pedorojisuto (Tokyo) 54:143–155

    CAS  Google Scholar 

  • Gray CW, McLaren RG, Roberts AHC, Condron LM (1999) The effect of long-term phosphatic fertiliser applications on the amounts and forms of cadmium in soils under pasture in New Zealand. Nutr Cycl Agroecosyst 54:267–277

    Article  CAS  Google Scholar 

  • International Agency for Research on Cancer (1993) Cadmium and cadmium compounds. Beryllium, cadmium, mercury, and exposures in the glass manufacturing industry. IARC Monogr Eval Carcinogen Risk Hum 58:119–237

    Google Scholar 

  • International Organization for Standardization (1995) Soil quality extraction of trace elements soluble in aqua regia. ISO 11466: 1995 (E). Geneva

  • Jalali M (2007) Phosphorus status and sorption characteristics of some calcareous soils of Hamadan, western Iran. Environ Geol 53:365–374

    Article  CAS  Google Scholar 

  • Jiao W, Chen W, Chang AC, Page AL (2012) Environmental risks of trace elements associated with long-term phosphate fertilizers applications: a review. Environ Pollut 168:44–53

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants. CRC press, Boca Raton

    Google Scholar 

  • Karrari P, Mehrpour O, Abdollahi M (2012) A systematic review on status of lead pollution and toxicity in Iran; guidance for preventive measures. DARU J Pharm Sci 20:2

    Article  CAS  Google Scholar 

  • Kassir LN, Darwish T, Shaban A, Olivier G, Ouaini N (2012) Mobility and bioavailability of selected trace elements in Mediterranean red soil amended with phosphate fertilizers: experimental study. Geoderma 189:357–368

    Article  Google Scholar 

  • Kpomblekou AK, Tabatabai MA (1994) Metal contents of phosphate rocks 1. Commun Soil Sci Plant Anal 25:2871–2882

    Article  Google Scholar 

  • Kratz S, Schick J, Schnug E (2016) Trace elements in rock phosphates and P containing mineral and organo-mineral fertilizers sold in Germany. Sci Total Environ 542:1013–1019

    Article  CAS  Google Scholar 

  • Kraus F, Kabbe C, Seis W (2015) Risk assessment and fertilizer regulation-a valuation with respect to recycled phosphorus materials from wastewater. Kompetenzzentrum Wasser Berlin gGmbH, Berlin

    Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Lugon-Moulin N, Ryan L, Donini P, Rossi L (2006) Cadmium content of phosphate fertilizers used for tobacco production. Agron Sustain Dev 26:151–155

    Article  CAS  Google Scholar 

  • Malakouti MJ (2015) Recommendation for optimal fertilizer use in agricultural crops of Iran. 3rd edn. Mobaleghan publication, Tehran (in Persian)

    Google Scholar 

  • Malakouti MJ, Gheibi MN (2000) Determination of critical levels of nutrients in soil, plant and fruit for the quality and yield improvements of Iran’s strategic crops. Agricultural education publication, Tehran

    Google Scholar 

  • Mermut AR, Jain JC, Song L, Kerrich R, Kozak L, Jana S (1996) Trace element concentrations of selected soils and fertilizers in Saskatchewan. Canada. J Environ Qual 25:845–853

    Article  CAS  Google Scholar 

  • Mortvedt JJ (1987) Cadmium levels in soils and plants from some long-term soil fertility experiments in the United States of America. J Environ Qual 16:137–142

    Article  CAS  Google Scholar 

  • Németh T, Magyar M, Csathó P, Osztoics E, Baczó G, Holló S, Németh I (2002) Long-term field evaluation of phosphate rock and superphosphate use strategies in acid soils of Hungary: two comparative field trials. Nutr Cycl Agroecosyst 63:81–89

    Article  Google Scholar 

  • Nziguheba G, Smolders E (2008) Inputs of trace elements in agricultural soils via phosphate fertilizers in European countries. Sci Total Environ 390:53–57

    Article  CAS  Google Scholar 

  • Otero N, Vitoria L, Soler A, Canals A (2005) Fertiliser characterisation: major, trace and rare earth elements. Appl Geochem 20:1473–1488

    Article  CAS  Google Scholar 

  • Rauf MA, Ikram M, Akhter N (2002) Analysis of trace metals in industrial fertilizers. J Trace Microprobe Tech 20:79–89

    Article  CAS  Google Scholar 

  • Raven KP, Loeppert RH (1997) Trace element composition of fertilizers and soil amendments. J Environ Qual 26:551–557

    Article  CAS  Google Scholar 

  • Report to the legislature: Levels of nonnutritive substances in fertilizers (2017) Washington State Department of Agriculture. Available: https://agr.wa.gov/pstfert/fertilizers/metals.aspx

  • Roberts TL (2014) Cadmium and phosphorous fertilizers: the issues and the science. Procedia Eng 83:52–59

    Article  CAS  Google Scholar 

  • Schroeder HA, Balassa JJ (1963) Cadmium: uptake by vegetables from superphosphate in soil. Science 140:819–820

    Article  CAS  Google Scholar 

  • Senesi N, Polemio M (1981) Trace element addition to soil by application of NPK fertilizers. Fertil Res 2:289–302

    Article  CAS  Google Scholar 

  • United States Environmental protection Agency (US EPA) (1999) Estimating risk from contaminants contained in agricultural fertilizers. EPA 68-W-98e0085

  • Uprety D, Hejcman M, Száková J, Kunzová E, Tlustoš P (2009) Concentration of trace elements in arable soil after long-term application of organic and inorganic fertilizers. Nutr Cycl Agroecosyst 85:241–252

    Article  CAS  Google Scholar 

  • Van Kauwenbergh SJ (2002) Cadmium content in phosphate rock and fertilizers. International Fertilizer Industry Association (IFA) Technical Conference, Chennai, India, September 2002

  • WHO (World Health Organization), Regional Office for Europe (2000) Inorganic pollutants, in air quality guide-lines for Europe, second edition, WHO regional publications, European series, No. 91, Copenhagen (pp 123–135)

  • Zhou Q (2003) Interaction between heavy metals and nitrogen fertilizers applied to soil-vegetable systems. Bull Environ Contam Toxicol 71:0338–0344

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Latifi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Latifi, Z., Jalali, M. Trace element contaminants in mineral fertilizers used in Iran. Environ Sci Pollut Res 25, 31917–31928 (2018). https://doi.org/10.1007/s11356-018-1810-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1810-z

Keywords

Navigation