Skip to main content

Advertisement

Log in

The levels of polycyclic aromatic hydrocarbons (PAHs) in human milk and exposure risk to breastfed infants in petrochemical industrialized Lanzhou Valley, Northwest China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We investigated in this paper the presence of PAHs in human milk from lactating women residing in Lanzhou, a petrochemical industrialized valley city in Northwest China. The PAH concentration levels in human milk samples from 98 healthy women were determined by gas chromatography/mass spectrometry (GC/MS). The associations between the lifestyle factors and the PAHs levels of human milk were analyzed. Moreover, we applied principal component analysis (PCA) method to gain a better insight into the similarities or dissimilarities of the human milk PAH loads and different pathways of source exposure. In addition, the exposure risks of breastfed infants due to PAH ingestion via breast milk were assessed and the relative breast-feeding risk to the total intake dose of infants was addressed. The results showed that the average fat-normalized human milk ∑15PAHs concentrations for the lactating women residing in four districts of Lanzhou, namely, Xigu, Anning, Qilihe, and Chengguan were 320.40, 270.36, 374.04, and 259.84 ng/g of fat, respectively. The ∑15PAHs of human milk from the lactating women of Qilihe District exhibited the highest concentration level, while the concentration level for women from Xigu District is the second highest for the observed human milk ∑15PAHs. And the corresponding BaPeq concentrations for women in Xigu, Anning, Qilihe, and Chengguan districts were 58.29, 47.95, 65.13, and 45.60 ng/g of fat, respectively. A significant correlation was only found between human milk and living district environment (p < 0.05). Although the Spearman correlation analysis showed that there were no significant correlation existing between other lifestyle and human milk PAHs, we confirmed that consuming barbecue food could elevate PAHs levels in human milk: the barbecue intake frequency caused 10% fluctuation of ∑15PAHs concentration between high frequency and low frequency group in our study. Furthermore, the exposure to second-hand smoke can also increase the ∑15PAHs levels in human milk by 4 to 11% here. Ingestion doses of PAHs by infants (19.37–77.75 ng kg−1 day−1) were much higher than the inhalation doses (2.83–16.48 ng kg−1 day−1), which indicated that the ingestion is the main exposure risk pathway for infants. Since there are limited guidelines and standards for PAHs ingestion dose in human milk by infant, we compared the ingestion dose of BaP with the upper bound estimates of BaP dietary exposure of 108 ng kg−1 day−1 for toddlers of ages between 1.5 and 2.5 years of age in the UK reported by Committee on Toxicity of Chemicals in Food (COT) and the data we obtained were lower than this upper bound. However, the estimated margin of exposure (MOE) values of BaP-MOE, PAH2-MOE, PAH4-MOE, and PAH8-MOE were smaller than 10,000 which indicated that there are potential hazard for breastfed infants consuming these human milk samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson KE, Kadlubar FF, Kulldorff M et al (2005) Dietary intake of heterocyclic amines and benzo (a) pyrene: associations with pancreatic cancer. Cancer Epidemiol Prev Biomarkers 14(9):2261–2265

    Article  CAS  Google Scholar 

  • Antignac JP, Main KM, Virtanen HE, Boquien CY, Marchand P, Venisseau A, Guiffard I, Bichon E, Wohlfahrt-Veje C, Legrand A, Boscher C, Skakkebæk NE, Toppari J, le Bizec B (2016) Country-specific chemical signatures of persistent organic pollutants (POPs) in breast milk of French, Danish and Finnish women. Environ Pollut 218:728–738

    Article  CAS  Google Scholar 

  • Aygun SF, Kabadayi F (2005) Determination of benzo[a]pyrene in charcoal grilled meat samples by HPLC with fluorescence detection. Int J Food Sci Nutr 56:581–585

    Article  CAS  Google Scholar 

  • Bearer CF (1995) How are children different from adults? Environ Health Perspect 103(Suppl 6):7–12

    Article  Google Scholar 

  • Benford D, Bolger PM, Carthew P, Coulet M, DiNovi M, Leblanc JC, Renwick AG, Setzer W, Schlatter J, Smith B, Slob W, Williams G, Wildemann T (2010) Application of the margin of exposure (MOE) approach to substances in food that are genotoxic and carcinogenic. Food Chem Toxicol 48:S2–S24

    Article  CAS  Google Scholar 

  • Berlin CM, Kacew S, Lawrence R, LaKind JS, Campbell R et al (2002) Criteria for chemical selection for programs on human milk surveillance and research for environmental chemicals. J Toxicol Environ Health A 65:1839–1851

    Article  CAS  Google Scholar 

  • Cavret S, Feidt C, Le Roux Y et al (2005) Study of mammary epithelial role in polycyclic aromatic hydrocarbons transfer to milk. J Dairy Sci 88(1):67–70

    Article  CAS  Google Scholar 

  • Chang KF, Fang GC, Chen JC, Wu YS (2006) Atmospheric polycyclic aromatic hydrocarbons (PAHs) in Asia: a review from 1999 to 2004. Environ Pollut 142(3):388–396

    Article  CAS  Google Scholar 

  • Cheung KC, Leung HM, Kong KY, Wong MH (2007) Residual levels of DDTs and PAHs in freshwater and marine fish from Hong Kong markets and their health risk assessment. Chemosphere 66(3):460–468

    Article  CAS  Google Scholar 

  • Chung SY, Yettella RR, Kim JS, Kwon K, Kim MC, Min DB (2011) Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food Chem 129(4):1420–1426

    Article  CAS  Google Scholar 

  • Cok I, Mazmanci B, Mazmanci MA et al (2012) Analysis of human milk to assess exposure to PAHs, PCBs and organochlorine pesticides in the vicinity Mediterranean city Mersin, Turkey. Environ Int 40:63–69

    Article  CAS  Google Scholar 

  • Committee on Toxicity of Chemicals in Food (COT) (2002) Polycyclic aromatic hydrocarbons in the 2000 total diet study. Report TOX/2002/26, TOX/2002/26 annex a (draft) and TOX/2002/26 annex B. United kingdom

  • CSY (2017) China statistical yearbook. China Statistical Publishing House, Beijing

    Google Scholar 

  • Department of Health and Human Services (2000) Breastfeeding. HHS blueprint for action on breastfeeding. Office on Women’s Health, Department of Health and Human Services, Washington

    Google Scholar 

  • Duval MM, Friedlander SK (2004) Source resolution of polycyclic aromatic hydrocarbons in Los Angeles atmosphere: application of a CMB with first order decay. US EPA Report EPA-600/2–81-161, Washington, DC

  • EPA (2011) Child-specific Exposure Factors Handbook, EPA/600/R-09/052F. National Center for Environmental Assessment. Office of Research and Development, Washington

    Google Scholar 

  • European Food Safety Authority (EFSA) (2008) Polycyclic aromatic hydrocarbons in food. Scientific opinion of the panel on contaminants in the food adopted on 9 June, 2008. EFSA J 724:1–114

    Google Scholar 

  • Gammon MD, Santella RM, Neugut AI et al (2002) Environmental toxins and breast cancer on Long Island. I. Polycyclic aromatic hydrocarbon DNA adducts. Cancer Epidemiology and Prevention. Biomarkers 11(8):677–685

    CAS  Google Scholar 

  • Inoue K, Harada K, Takenaka K, Uehara S, Kono M, Shimizu T, Takasuga T, Senthilkumar K, Yamashita F, Koizumi A (2006) Levels and concentration ratios of polychlorinated biphenyls and polybrominated diphenyl ethers in serum and breast milk in Japanese mothers. Environ Health Perspect 114(8):1179–1185

    Article  CAS  Google Scholar 

  • Iwegbue CMA, Edeme JN, Tesi GO, Bassey FI, Martincigh BS, Nwajei GE (2014) Polycyclic aromatic hydrocarbon concentrations in commercially available infant formulae in Nigeria: estimation of dietary intakes and risk assessment. Food Chem Toxicol 72:221–227

    Article  CAS  Google Scholar 

  • Jiang Y, Yves UJ, Sun H, Hu X, Zhan H, Wu Y (2016) Distribution, compositional pattern and sources of polycyclic aromatic hydrocarbons in urban soils of an industrial city, Lanzhou, China. Ecotoxicol Environ Saf 126:154–162

    Article  CAS  Google Scholar 

  • Jolliffe IT (1986) Principal component analysis. Springer-Verlag, New York

    Book  Google Scholar 

  • Jongeneelen FJ, van Leeuwen FE, Oosterink S, Anzion RB, van der Loop F, Bos RP, van Veen HG (1990) Ambient and biological monitoring of cokeoven workers: determinants of the internal dose of polycyclic aromatic hydrocarbons. Occup Environ Med 47(7):454–461

    Article  CAS  Google Scholar 

  • Kazerouni N, Sinha R, Hsu CH, Greenberg A, Rothman N (2001) Analysis of 200 food items for benzo [a] pyrene and estimation of its intake in an epidemiologic study. Food Chem Toxicol 39(5):423–436

    Article  CAS  Google Scholar 

  • Kim SR, Halden RU, Buckley TJ (2008) Polycyclic aromatic hydrocarbons in human milk of nonsmoking US women. Environmental science. Technology 42(7):2663–2667

    Article  CAS  Google Scholar 

  • Kishikawa N, Kuroda N (2009) Evaluation of organic environmental pollutants detected in human milk. J Health Sci 55(1):1–10

    Article  CAS  Google Scholar 

  • Lee MS, Eum KD, Zoh KD, Kim TS, Pak YS, Paek D (2007) 1-Hydroxypyrene as a biomarker of PAH exposure among subjects living in two separate regions from a steel mill. Int Arch Occup Environ Health 80(8):671–678

    Article  CAS  Google Scholar 

  • Madhavan ND, Naidu KA (1995) Polycyclic aromatic hydrocarbons in placenta, maternal blood, umbilical cord blood and milk of Indian women. Human Exp Toxicol 14(6):503–506

    Article  CAS  Google Scholar 

  • Mao XX, Yu ZS, Ding ZY, Huang T, Ma JM, Zhang G, Li J, Gao H (2016) Sources and potential health risk of gas phase PAHs in Hexi corridor, Northwest China. Environ Sci Pollut Res 23:2603–2612

    Article  CAS  Google Scholar 

  • Ministry of environmental protection of the People’s Republic of China (MEPC) (2016) Exposure factors handbook of Chinese population (children: 0–5 years). China Environmental Science Press, Beijing

    Google Scholar 

  • Morrison D (1967) Multivariate statistical methods. McGraw-Hill, New York

    Google Scholar 

  • Mu XL (2016) An Emission Inventory of Polycyclic Aromatic Hydrocarbons in China (D)

  • Myllynen P, Pasanen M, Pelkonen O et al (2005) A human organ for developmental toxicology research and biomonitoring. Placenta 26(5):361–371

    Article  CAS  Google Scholar 

  • Needham LL, Wang RY (2002) Analytic considerations for measuring environmental chemicals in breast milk. Environ Health Perspect 110(6):A317–A324

    Article  CAS  Google Scholar 

  • Needham L, Grandjean P, Heinzow B et al (2011) Partition of environmental chemicals between maternal and fetal blood and tissues. Environ Sci Technol 45:1121–1126

    Article  CAS  Google Scholar 

  • Polder A, Odland JO, Tkachev A, Føreid S, Savinova TN, Skaare JU (2003) Geographic variation of chlorinated pesticides, toxaphenes and PCBs in human milk from sub-arctic and arctic locations in Russia. Sci Total Environ 306(1):179–195

    Article  CAS  Google Scholar 

  • Reinik M, Tamme T, Roasto M, Juhkam K, Tenno T, Kiis A (2007) Polycyclic aromatic hydrocarbons (PAHs) in meat products and estimated PAH intake by children and the general population in Estonia. Food Addit Contam 24(4):429–437

    Article  CAS  Google Scholar 

  • Schick S, Glantz S (2005) Scientific analysis of second-hand smoke by the tobacco industry, 1929-1972. Nicotine Tob Res 7(4):591–612

    Article  Google Scholar 

  • Scientific Committee on Food (SCF) (2002) Opinion of the scientific committee on food on the risks of human health of polycyclic aromatic hydrocarbons in food (expressed on 4 December, 2002)

  • Shen H, Main KM, Virtanen HE, Damggard IN, Haavisto AM, Kaleva M, Boisen KA, Schmidt IM, Chellakooty M, Skakkebaek NE, Toppari J, Schramm KW (2007) From mother to child: investigation of prenatal and postnatal exposure to persistent bioaccumulating toxicants using breast milk and placenta biomonitoring. Chemosphere 67(9):S256–S262

    Article  CAS  Google Scholar 

  • Sinha R, Kulldorff M, Gunter MJ et al (2005) Dietary benzo [a] pyrene intake and risk of colorectal adenoma. Cancer Epidemiol Prev Biomarkers 14(8):2030–2034

    Article  CAS  Google Scholar 

  • Skrbic B, Szyrwinska K, Durisic-Mladenovic N et al (2010) Principal component analysis of indicator PCB profiles in breast milk from Poland. Environ Int 36(8):862–872

    Article  CAS  Google Scholar 

  • Sudaryanto A, Kunisue T, Kajiwara N, Iwata H, Adibroto TA, Hartono P, Tanabe S (2006) Specific accumulation of organochlorines in human breast milk from Indonesia: levels, distribution, accumulation kinetics and infant health risk. Environ Pollut 139(1):107–117

    Article  CAS  Google Scholar 

  • Tao Y, An XP, Sun ZB, Hou Q, Wang Y (2012) Association between dust weather and number of admissions for patients with respiratory diseases in spring in Lanzhou. Sci Total Environ 423:8–11

    Article  CAS  Google Scholar 

  • Tsang HL, Wu S, Leung CKM, Tao S, Wong MH (2011) Body burden of POPs of Hong Kong residents, based on human milk, maternal and cord serum. Environ Int 37(1):142–151

    Article  CAS  Google Scholar 

  • USEPA (2002) Polycyclic organic matter. Environmental Protection Agency, Washington

    Google Scholar 

  • Veyrand B, Sirot V, Durand S, Pollono C, Marchand P, Dervilly-Pinel G, Tard A, Leblanc JC, le Bizec B (2013) Human dietary exposure to polycyclic aromatic hydrocarbons: results of the second French Total Diet Study. Environ Int 54:11–17

    Article  CAS  Google Scholar 

  • Wang RY, Needham LL (2007) Environmental chemicals: from the environment to food, to breast milk, to the infant. J Toxicol Environ Health B 10(8):597–609

    Article  CAS  Google Scholar 

  • Wang RY, Bates MN, Goldstein DA et al (2005) Human milk research for answering questions about human health. J Toxic Environ Health A 68(20):1771–1801

    Article  CAS  Google Scholar 

  • Wang L, Zhao Y, Liu XY, Huang T, Wang Y, Gao H, Ma J (2015) Cancer risk of petrochemical workers exposed to airborne PAHs in industrial Lanzhou City, China. Environ Sci Pollut Res 22(24):19793–19803

    Article  CAS  Google Scholar 

  • Wang L, Zhao Y, Yi X, Wang Z, Yi Y, Huang T, Gao H, Ma J (2017) Spatial distribution of atmospheric PAHs and their genotoxicity in petrochemical industrialized Lanzhou valley, Northwest China. Environ Sci Pollut Res 24(14):12820–12834

    Article  CAS  Google Scholar 

  • Weaver VM, Buckley TJ, Groopman JD (1998) Approaches to environmental exposure assessment in children. Environ Health Perspect 106(Suppl 3):827–832

    Article  Google Scholar 

  • Wretling S, Eriksson A, Eskhult GA, Larsson B (2010) Polycyclic aromatic hydrocarbons (PAHs) in Swedish smoked meat and fish. J Food Compos Anal 23(3):264–272

    Article  CAS  Google Scholar 

  • Xia Z, Duan X, Qiu W, Liu D, Wang B, Tao S, Jiang Q, Lu B, Song Y, Hu X (2010) Health risk assessment on dietary exposure to polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Sci Total Environ 408(22):5331–5337

    Article  CAS  Google Scholar 

  • Yu Y, Wang X, Wang B, Tao S, Liu W, Wang X, Cao J, Li B, Lu X, Wong MH (2011) Polycyclic aromatic hydrocarbon residues in human milk, placenta, and umbilical cord blood in Beijing, China. Environ Sci Technol 45(23):10235–10242

    Article  CAS  Google Scholar 

  • Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43(4):812–819

    Article  CAS  Google Scholar 

  • Zhu LB (2015) The pollution characteristics and health risk assessment of PAHs in different fine particulate in Lanzhou (D)

Download references

Acknowledgements

This research was supported by National Science Foundation of China (grants 41671460, 41371453, and 41503089), Key Project of Gansu Province People’s Livelihood Science and Technology (grants 1503FCMA003), and Fundamental Research Funds for the Central University (nos. lzujbky-2016-249 and lzujbky-2016-253).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong Gao or Jianmin Ma.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, A., Zhao, Y. et al. The levels of polycyclic aromatic hydrocarbons (PAHs) in human milk and exposure risk to breastfed infants in petrochemical industrialized Lanzhou Valley, Northwest China. Environ Sci Pollut Res 25, 16754–16766 (2018). https://doi.org/10.1007/s11356-018-1799-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1799-3

Keywords

Navigation