Skip to main content
Log in

Absorption and subcellular distribution of cadmium in tea plant (Camellia sinensis cv. “Shuchazao”)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A hydroponic experiment was performed to investigate the Cd absorption and subcellular distribution in tea plant, Camellia sinensis. Increased Cd accumulation potential was observed in the tea plant in a Cd-enriched environment, but most of the Cd was absorbed by the roots of C. sinensis. The Cd in all the root fractions was mostly distributed in the soluble fraction, followed by the cell wall fraction. By contrast, the Cd was least distributed in the organelle fraction. The adsorption of Cd onto the C. sinensis roots was described well by the Langmuir isotherm model than the Freundlich isotherm. Most of the Cd (38.6 to 59.4%) was integrated with pectates and proteins in the roots and leaves. Fourier transform infrared spectroscopy (FTIR) analysis showed that small molecular organic substances, such as amino acids, organic acids, and carbohydrates with N–H, C=O, C–N, and O–H functional groups in the roots, bonded with Cd(II). The Cd accumulation in the C. sinensis leaves occurred in the cell wall and organelle fractions. C. sinensis has great capability to transport Cd, thereby indicating pollution risk. The metal homeostasis of Fe, Mn, Ca, and Mg in C. sinensis was affected when the Cd concentration was 1.0–15.0 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ammari TG, Al-Labadi I, Tahboub A, Ghrair A (2015) Assessment of unmodified wetland bio-waste: shoots of Cyperus laevigatus, for cadmium adsorption from aqueous solutions. Process Saf Environ Protect 95:77–85

    Article  CAS  Google Scholar 

  • Barst BD, Rosabal M, Campbell PGC, Drevnick PE (2016) Subcellular distribution of trace elements and liver histology of landlocked Arctic char (Salvelinus alpinus) sampled along a mercury contamination gradient. Environ Pollut 212:574–583

    Article  CAS  Google Scholar 

  • Belimov AA, Malkov NV, Puhalsky JV, Safronova VI, Tikhonovichat IA (2016) High specificity in response of pea mutant SGECdt to toxic metals: growth and element composition. Environ Exp Bot 128:91–98

    Article  CAS  Google Scholar 

  • Bhatia NP, Walsh KB, Baker AJM (2005) Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey. J Exp Bot 56:1343–1349

    Article  CAS  Google Scholar 

  • Cao DJ, Shi XD, Li H, Xie PP, Zhang HM, Deng JW, Liang YG (2015a) Effects of lead on tolerance, bioaccumulation, and antioxidative defense system of green algae, Cladophora. Ecotoxicol Environ Saf 112:231–237

    Article  CAS  Google Scholar 

  • Cao DJ, Xie P, Deng JW, Zhang HM, Ma RX, Liu C, Liu RJ, Liang YG, Li H, Shi XD (2015b) Effects of Cu2+ and Zn2+ on growth and physiological characteristics of green algae, Cladophora. Environ Sci Pollut Res 22:16535–16541

    Article  CAS  Google Scholar 

  • Çelekli A, Kapi M, Bozkurt H (2013) Effect of cadmium on biomass, pigmentation, malondialdehyde, and proline of Scenedesmus quadricauda var. Longispina. Bull Environ Contam Toxicol 91:571–576

    Article  CAS  Google Scholar 

  • Chakravarty R, Banerjee PC (2012) Mechanism of cadmium binding on the cell wall of an acidophilic bacterium. Bioresour Technol 108:176–183

    Article  CAS  Google Scholar 

  • Chug R, Gour VS, Mathur S, Kothari SL (2016) Optimization of extracellular polymeric substances production using Azotobacter beijreinckii and Bacillus subtilis and its application in chromium (VI) removal. Bioresour Technol 214:604–608

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  CAS  Google Scholar 

  • Coates JR, Meyers A (eds) (2000) Encyclopaedia of analytical chemistry. John Wiley and Sons Ltd., Chichester, p 10815

    Google Scholar 

  • Dean AP, Nicholson JM, Sigee DC (2008) Impact of phosphorus quota and growth phase on carbon allocation in Chlamydomonas reinhardtii: an FTIR microspectroscopy study. Eur J Phycol 43:345–354

    Article  CAS  Google Scholar 

  • Fan JL, Zhang J, Zhang CL, Ren L, Shi QQ (2011) Adsorption of 2,4,6-trichlorophenol from aqueous solution onto activated carbon derived from loosestrife. Desalination 267:139–146

    Article  CAS  Google Scholar 

  • Farhan AM, Al-Dujaili AH, Awwad AM (2013) Equilibrium and kinetic studies of cadmium(II) and lead(II) ions biosorption onto Ficus carcia leaves. Int J Ind Chem 4:24

    Article  Google Scholar 

  • Fasahat P (2015) Recent progress in understanding cadmium toxicity and tolerance in rice. Emir J Food Agric 27(1):94–105

    Article  Google Scholar 

  • Fu XP, Dou CM, Chen YX, Chen XC, Shi JY, Yu MG, Xu J (2011) Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater 186:103–107

    Article  CAS  Google Scholar 

  • Gratão PL, Monteiro CC, Antunes AM, Peres LEP, Azevedo RA (2008) Acquired tolerance of tomato (Lycopersicon esculentum cv. Micro-Tom) plants to cadmium-induced stress. Ann Appl Biol 153:321–333

    Article  Google Scholar 

  • He JY, Ren YF, Chen XL, Chen H (2014) Protective roles of nitric oxide on seed germination and seedling growth of rice (Oryza sativa L.) under cadmium stress. Ecotoxicol Environ Saf 108:114–119

    Article  CAS  Google Scholar 

  • Hou M, Hu CJ, Xiong L, Lu C (2013) Tissue accumulation and subcellular distribution of vanadium in Brassica juncea and Brassica chinensis. Microchem J 110:575–578

    Article  CAS  Google Scholar 

  • Hu LF, McBrid MB, Cheng H, Wu JJ, Shi JC, Xu JM, Wu LS (2011) Root-induced changes to cadmium speciation in the rhizosphere of two rice (Oryza sativa L.) genotypes. Environ Res 111:356–361

    Article  CAS  Google Scholar 

  • Huang YW, Xu HH, Wang SM, Zhao Y, Huang YM, Li RB, Wang XJ, Hao SM, Sheng J (2014) Absorption of caffeine in fermented Pu-er tea is inhibited in mice. Food Funct 5:1520–1528

    Article  CAS  Google Scholar 

  • Islam MS, Saito T, Kurasaki M (2015) Phytofiltration of arsenic and cadmium by using an aquatic plant, Micranthemum umbrosum: phytotoxicity, uptake kinetics, and mechanism. Ecotoxicol Environ Saf 112:193–200

    Article  CAS  Google Scholar 

  • Kasowska D, Gediga K, Spiak Z (2018) Heavy metal and nutrient uptake in plants colonizing post-flotation copper tailings. Environ Sci Pollut Res 25:824–835

    Article  CAS  Google Scholar 

  • Kavita K, Mishra A, Jha B (2013) Extracellular polymeric substances from two biofilm forming Vibrio species: characterization and applications. Carbohydr Polym 94:882–888

    Article  CAS  Google Scholar 

  • Kazy SK, Das SK, Sar P (2006) Lanthanum biosorption by a Pseudomonas sp.: equilibrium studies and chemical characterization. J Ind Microbiol Biotechnol 33:773–783

    Article  CAS  Google Scholar 

  • Kim YY, Yang YY, Lee Y (2002) Pb and Cd uptake in rice roots. Physiol Plant 116(3):368–372

    Article  CAS  Google Scholar 

  • Lee JW, Lee CK, Moon CS, Choi IJ, Lee KJ, Yi SM, Jang BK, Yoon BJ, Kim DS, Peak D, Sul D, Oh E, Im H, Kang HS, Kim J, Lee JT, Kim K, Park KL, Ahn R, Park SH, Kim SC, Park CH, Lee JH (2012) Korea National Survey for environmental pollutants in the human body 2008: heavy metals in the blood or urine of the Korean population. Int J Hyg Environ Health 215:449–457

    Article  CAS  Google Scholar 

  • Li DD, Zhou DM, Wang P (2011) Subcellular Cd distribution and its correlation with antioxidant enzymatic activities in wheat (Triticum aestivum) roots. Ecotoxicol Environ Saf 74:874–881

    Article  CAS  Google Scholar 

  • Lin ZM, Zheng DY, Zhang XC, Wang ZX, Lei JC, Liu ZH, Li GH, Wang SH, Ding YF (2016) Chalky part differs in chemical composition from translucent part of japonica rice grains as revealed by a notched-belly mutant with white-belly. Sci Food Agric 96(11):3937–3943

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London, p 889

    Google Scholar 

  • Michalska M, Asp H (2001) Influence of lead and cadmium on growth, heavy metal uptake, and nutrient concentration of three lettuce cultivars grown in hydroponic culture. Commun Soil Sci Plant Anal 32:571–583

    Article  CAS  Google Scholar 

  • Morel M, Crouzet J, Gravot A, Auroy P, Leonhardt N, Vavasseur A, Richaud P (2009) AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant Physiol 149:894–904

    Article  CAS  Google Scholar 

  • Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa NK (2006) Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Sci Plant Nutr 52(4):464–469

    Article  CAS  Google Scholar 

  • Park D, Yun YS, Park JM (2005) Studies on hexavalent chromium biosorption by chemically-treated biomass of Ecklonia sp. Chemosphere 60:1356–1364

    Article  CAS  Google Scholar 

  • Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. Plant J 32(4):539–548

    Article  CAS  Google Scholar 

  • Qiu Q, Wang YT, Yang ZY, Yuan JG (2011) Effects of phosphorus supplied in soil on subcellular distribution and chemical forms of cadmium in two Chinese flowering cabbage (Brassica parachinensis L.) cultivars differing in cadmium accumulation. Food Chem Toxicol 49:2260–2267

    Article  CAS  Google Scholar 

  • Sanita di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Article  Google Scholar 

  • Seenivasan S, Anderson TA, Muraleedharan N (2016) Heavy metal content in tea soils and their distribution in different parts of tea plants, Camellia sinensis (L). O. Kuntze. Environ Monit Assess 188:428

    Article  CAS  Google Scholar 

  • Su Y, Liu JL, Lu ZW, Wang XM, Zhang Z, Shi GR (2014) Effects of iron deficiency on subcellular distribution and chemical forms of cadmium in peanut roots in relation to its translocation. Environ Exp Bot 97:40–48

    Article  CAS  Google Scholar 

  • Sun H, Wang DY, Zhou ZY (2016) Association of cadmium in urine and blood with age in a general population with low environmental exposure. Chemosphere 156:392–397

    Article  CAS  Google Scholar 

  • Tezotto T, Favarin JL, Azevedo RA, Alleoni LRF, Mazzafera P (2012) Coffee is highly tolerant to cadmium, nickel and zinc: plant and soil nutritional status, metal distribution and bean yield. Field Crop Res 125:25–34

    Article  Google Scholar 

  • Tong QQ (2006) Tea cultivation. Chinese Agricultural Press, Beijing, p 93, p 344

  • Walker DJ, Bernal MP (2004) The effects of copper and lead on growth and zinc accumulation of Thlaspi caerulescens J. and C. Presl: implications for phytoremediation of contaminated soils. Water Air Soil Pollut 151:361–372

    Article  CAS  Google Scholar 

  • Wang X, Liu YG, Zeng GM, Chai LY, Song XC, Min ZY, Xiao X (2008) Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ Exp Bot 62:389–395

    Article  CAS  Google Scholar 

  • Wang P, Deng XJ, Huang Y, Fang XL, Zhang J, Wan HB (2015) Comparison of subcellular distribution and chemical forms of cadmium among four soybean cultivars at young seedlings. Environ Sci Pollut Res 22:19584–19595

    Article  CAS  Google Scholar 

  • Wang ZS, Feng CL, Ye C, Wang YS, Yan CZ, Li R, Yan YJ, Chi QQ (2016) Subcellular partitioning profiles and metallothionein levels in indigenous clams Moerella iridescens from a metal-impacted coastal bay. Aquat Toxicol 176:10–23

    Article  CAS  Google Scholar 

  • Weng BS, Xie XY, Weiss DJ, Yan CL (2012) Kandelia obovata (S., L.) Yong tolerance mechanisms to cadmium: subcellular distribution, chemical forms and thiol pools. Mar Pollut Bull 64:2453–2460

    Article  CAS  Google Scholar 

  • Wright PR, Rattray R, Lalor G, Hanson R (2010) Minimal health impact from exposure to diet-sourced cadmium on a population in central Jamaica. Environ Geochem Health 32:567–581

    Article  CAS  Google Scholar 

  • Xie PP, Deng JW, Zhang HM, Ma YH, Cao DJ, Ma RX, Liu RJ, Liu C, Liang YG (2015) Effects of cadmium on bioaccumulation and biochemical stress response in rice (Oryza sativa L.) Ecotoxicol Environ Saf 122:392–398

    Article  CAS  Google Scholar 

  • Xu QS, Zhu JY, Zhao SQ, Hou Y, Li FD, Tai YL, Wan XC, Wei CL (2017) Transcriptome profiling using single-molecule direct RNA sequencing approach for in-depth understanding of Genes in Secondary Metabolism Pathways of Camellia sinensis. Frontiers in Plant Science 8:1205

  • Zhang WL, Du Y, Zhai MM, Shang Q (2014a) Cadmium exposure and its health effects: a 19-year follow-up study of a polluted area in China. Sci Total Environ 470-471:224–228

    Article  CAS  Google Scholar 

  • Zhang W, Lin KF, Zhou J, Zhang W, Liu LL, Zhang QQ (2014b) Cadmium accumulation, sub-cellular distribution and chemical forms in rice seedling in the presence of sulfur. Environ Toxicol Pharmacol 37:348–353

    Article  CAS  Google Scholar 

  • Zhao YF, Wu JF, Shang DR, Ning JS, Zhai YX, Sheng XF, Ding HY (2015) Subcellular distribution and chemical forms of cadmium in the edible seaweed, Porphyra yezoensis. Food Chem 168:48–54

    Article  CAS  Google Scholar 

  • Zhou CF, Huang MY, Ren HJ, Yu JD, Wu JM, Ma XQ (2017) Bioaccumulation and detoxification mechanisms for lead uptake identified in Rhus chinensis Mill. seedlings. Ecotoxicol Environ Saf 142:59–68

    Article  CAS  Google Scholar 

Download references

Funding

This research is supported by the Opening Project of State Key Laboratory of Tea Plant Biology and Utilization (SKLTOF20150104).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-chun Wan.

Additional information

Responsible editor: Elena Maestri

Highlights

• The Cd was absorbed by the roots of Camellia sinensis and was most distributed in the soluble fraction.

• The adsorption of Cd onto the C. sinensis roots exhibited a better fit to the Langmuir isotherm model.

• Most of the Cd (38.6 to 59.4%) was integrated with pectates and proteins in the roots and leaves.

• The metal homeostasis of Fe, Mn, Ca, and Mg in C. sinensis was affected when the Cd concentration was 1.0–15.0 mg/L.

• N–H, C=O, C–N, and O–H functional groups in the roots bonded with Cd(II).

• The Cd accumulation in the C. sinensis leaves occurred in the cell wall and organelle fractions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Dj., Yang, X., Geng, G. et al. Absorption and subcellular distribution of cadmium in tea plant (Camellia sinensis cv. “Shuchazao”). Environ Sci Pollut Res 25, 15357–15367 (2018). https://doi.org/10.1007/s11356-018-1671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1671-5

Keywords

Navigation