Skip to main content
Log in

Using a multi-method approach based on soil radon deficit, resistivity, and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Geochemical and geophysical surveys employing radon deficit, resistivity, and induced polarization (IP) measurements were undertaken on soil contaminated with non-aqueous phase liquids (NAPLs) in two different sites in India and in Italy. Radon deficit, validated through the comparison with average soil radon in reference unpolluted areas, shows the extension of contamination in the upper part of the unsaturated aquifers. In site 1 (Italy), the spill is not recent. A residual film of kerosene covers soil grains, inhibiting their chargeability and reducing electrical resistivity difference with background unpolluted areas. No correlation between the two parameters is observed. Soil volatile organic compounds (VOCs) concentration is not linked with radon deficit, supporting the old age of the spillage. NAPL pollution in sites 2a and 2b (India) is more recent and probably still active, as demonstrated by higher values of electrical resistivity. A good correlation with IP values suggests that NAPL is still distributed as droplets or as a continuous phase in the pores, strengthening the scenario of a fresh spill or leakage. Residual fraction of gasoline in the pore space of sites 2a and 2b is respectively 1.5 and 11.8 kg per cubic meter of terrain. This estimation is referred to the shallower portion of the unsaturated aquifer. Electrical resistivity is still very high indicating that the gasoline has not been strongly degraded yet. Temperature and soil water content influence differently radon deficit in the three areas, reducing soil radon concentration and partly masking the deficit in sites 2a and 2b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Candansayar ME (2008) Two-dimensional individual and joint inversion of three and four-electrode array dc resistivity data. J Geophys Eng 5(3):290–300. https://doi.org/10.1088/1742-2132/5/3/005

    Article  Google Scholar 

  • Carapezza ML, Barberi F, Tarchini L, Ranaldi M, Ricci T, Barrancos J, Fischer C, Lucchetti C, Melian G, Perez N, Tuccimei P, Vogel A, Weber K (2012) Hazardous gas emissions from the flanks of the quiescent Colli Albani volcano (Rome, Italy). Appl Geochem 27(9):1767–1782. https://doi.org/10.1016/j.apgeochem.2012.02.012

    Article  CAS  Google Scholar 

  • Castelluccio M, De Simone G, Lucchetti C, Moroni M, Salvati F, Tuccimei P (2015) A new technique to measure in situ soil gas permeability. J Geochem Explor 148:56–59. https://doi.org/10.1016/j.gexplo.2014.08.002

    Article  CAS  Google Scholar 

  • Central Groundwater Board, Ministry of Water Resources—Government of India (2014) Ground water year book of West Bengal & Andaman & Nicobar Islands (2013–2014). Technical report. Series D

  • Chatterjee S, Paul AK, Roy U (2003-2004) Some observations on the diverse lateritic landscape of Subarnarekha—Kangsabati—Silabati interfluves of Paschim Medinipur, West Bengal. Indian J Geogr Environ 8-9:82–95

    Google Scholar 

  • Che-Alota V, Atekwana EA, Atekwana EA, Sauck WA, Werkema DD (2009) Temporal geophysical signatures from contaminant-mass remediation. Geophysics 74(4):B113–B123. https://doi.org/10.1190/1.3139769

    Article  Google Scholar 

  • Chiodini G, Valenza M. (2007) Results of INGV-DPC-V5 project: the catalogue of Italian gas emissions. googas.ov.ingv.it. Accessed 13 Mar 2015

  • Dahlin T, Zhou B (2004) A numerical comparison of 2-D resistivity imaging with10 electrode arrays. Geophys Prospect 52(5):379–398. https://doi.org/10.1111/j.1365-2478.2004.00423.x

    Article  Google Scholar 

  • De Simone G, Galli G, Lucchetti C (2015) Using natural radon as a tracer of gasoline contamination. Procedia Earth Planet Sci 13:104–107. https://doi.org/10.1016/j.proeps.2015.07.025

    Article  Google Scholar 

  • De Simone G, Lucchetti C, Galli G, Tuccimei P (2016) Correcting for H2O interference using electrostatic collection-based silicon detectors. J Environ Radioact 162-163:146–153. https://doi.org/10.1016/j.jenvrad.2016.05.021

    Article  Google Scholar 

  • De Simone G, Lucchetti C, Pompilj F, Galli G, Tuccimei P, Curatolo P, Giorgi R (2017) Soil radon survey to assess NAPL contamination from an ancient spill. Do kerosene vapors affect radon partition ? J Environ Radioact 171:138–147. https://doi.org/10.1016/j.jenvrad.2017.02.014

    Article  Google Scholar 

  • Garg KK, Jha MK, Kar S (2005) Field investigation of water movement and nitrate transport under perched water table conditions. Biosyst Eng 92(1):69–84. https://doi.org/10.1016/j.biosystemseng.2005.05.016

    Article  Google Scholar 

  • Giordano G, Carapezza ML, Della Monica G, Todesco M, Tuccimei P, Carlucci G, De Benedetti AA, Gattuso A, Lucchetti C, Piersanti M, Ranaldi M, Tarchini L, Pagliuca NM, Ricci T, Facchini S, D’Ambrosio F, Misuraca M, Bonamico A, Geshi N (2016) Conditions for long-lasting gas eruptions: the 2013 event at Fiumicino International airport (Rome, Italy). J Volcanol Geotherm Res 325:119–134. https://doi.org/10.1016/j.jvolgeores.2016.06.020

    Article  CAS  Google Scholar 

  • Johansson S, Fiandaca G, Dahlin T (2015) Influence of non-aqueous phase liquid configuration on induced polarization parameters: conceptual models applied to a time-domain field case study. J Appl Geophys 123:295–309. https://doi.org/10.1016/j.jappgeo.2015.08.010

    Article  Google Scholar 

  • Loke MH (1997) RES2DINV ver. 3.3 for Windows 3.1, 95, and NT Advanced Geosciences, Inc. 66

  • Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudo sections by a quasi-Newton method. Geophys Prospect 4:131–152

    Article  Google Scholar 

  • Machiwal D, Jha MK (2016) Exploring hydrogeology and groundwater dynamics in a lateritic terrain of West Bengal, India, under limited data conditions. Environ Earth Sci 75:article 831

    Article  Google Scholar 

  • Mackay DM, Cherry JA (1989) Groundwater contamination: pump-and-treat remediation. Environ Sci Technol 23(6):630–636. https://doi.org/10.1021/es00064a001

    Article  CAS  Google Scholar 

  • Rogie JD, Kerrick DM, Chiodini G, Frondini F (2000) Flux measurements of nonvolcanic CO2 emission from some vents in central Italy. J Geophys Res 105(B4):8435–8445. https://doi.org/10.1029/1999JB900430

    Article  CAS  Google Scholar 

  • Sauck WA, Atekwana EA, Nash MS (1998) High conductivities associated with an LNAPL plume imaged by integrated geophysical techniques. J Environ Eng Geophys 2:203–212

    Google Scholar 

  • Scanlon BR, Mukherjee A, Gates J, Reedy RC, Sinha AK (2010) Groundwater recharge in natural dune systems and agricultural ecosystems in the Thar Desert region, Rajasthan, India. Hydrogeol J 18(4):959–972. https://doi.org/10.1007/s10040-009-0555-7

    Article  CAS  Google Scholar 

  • Schubert M (2015) Using radon as environmental tracer for the assessment of subsurface non-aqueous phase liquid (NAPL) contamination—a review. Eur Phys J Special Topics 224(4):717–730. https://doi.org/10.1140/epjst/e2015-02402-3

    Article  CAS  Google Scholar 

  • Schubert M, Lehmann K, Paschke A (2007) Determination of radon partition coefficients between water and organic liquids and their utilization for the assessment of subsurface NAPL contamination. Sci Total Environ 376(1-3):306–316

    Article  CAS  Google Scholar 

  • Semprini L, Hopkins OS, Tasker BR (2000) Laboratory, field, and modeling studies of Radon-222 as a natural tracer for monitoring NAPL contamination. Transp Porous Med 38(1/2):223–240. https://doi.org/10.1023/A:1006671519143

    Article  CAS  Google Scholar 

  • Shefer I, Schwartz N, Furman A (2013) The effect of free-phase NAPL on the spectral induced polarization signature of variably saturated soil. Water Resour Res 49(10):6229–6237. https://doi.org/10.1002/wrcr.20502

    Article  Google Scholar 

  • Slater LD, Lesmes D (2002) IP interpretation in environmental investigations. Geophysics 67(1):77–88. https://doi.org/10.1190/1.1451353

    Article  Google Scholar 

  • Tuccimei P, De Simone G, Curatolo P, Giorgi R, Lucchetti C, Castelluccio M, Calì A (2014) Tracing NAPLs contamination in the vadose zone using soil radon. Rend online Soc Geol It 33:100–103

    Google Scholar 

  • Weigel F (1978) Radon. Chem Ztg 102:287–299

    CAS  Google Scholar 

  • Zhang Q, Davis LC, Erickson LE (1998) Effect of vegetation on transport of groundwater and nonaqueous phase liquid contaminants. J Hazard Subst Res 1:8–20

    Google Scholar 

Download references

Acknowledgements

This research was carried out in the frame of TECO projects (Technological eco-innovations for the quality control and the decontamination of polluted waters and soils) funded by the European Union. A grant was attributed to Mauro Castelluccio to visit Indian Institute of Technology at Kharagpur for 40 days and exchange knowledge and experience on NAPLs contamination. Derek Lane-Smith (Durridge Co.) is warmly acknowledged because he made available a RAD7 instrument in Kharagpur (India), during the stay of Mauro Castelluccio there. Durridge people in India facilitated the expedition of the radon monitor from Delhi to Kharagpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Tuccimei.

Additional information

Responsible editor: Georg Steinhauser

Electronic supplementary material

Table S1

(DOCX 46 kb).

Table S2

(DOCX 31 kb).

Appendix.

Appendix.

Starting from Eq. (1), proposed by Schubert (2015) to calculate soil radon concentration in the pore space (C), we have developed a new calculation, Eq. (2), where radon concentration in the polluted sites is firstly compared to soil radon values in close unpolluted areas to calculate the radon deficit (Di). Equilibrium radon concentration in the background is determined using a simplified version of Eq. (1):

$$ {C}_{\infty }=\varepsilon\ {A}_{\mathrm{Ra}}{\rho}_d/n $$
(3)

From the comparison of Eqs. (1) and (3), it turns out that

$$ {D}_i=1/\left(1-{S}_{\mathrm{F}}+{K}_{\mathrm{W}/\mathrm{SG}}{S}_{\mathrm{F}}\ \left(1-{X}_{\mathrm{NAPL}}\right)+{K}_{\mathrm{NAPL}/\mathrm{SG}}{X}_{\mathrm{NAPL}}{S}_F\right) $$
(4)

Now, the total fluid saturation of the pore space (SF) is the sum of SNAPL and SW, which are the pores fractions occupied by NAPL (SNAPL) and water (SW), respectively, and these two terms can be expressed as follows:

$$ {S}_{\mathrm{NAPL}\mathrm{i}}={\mathrm{NAPL}}_{\mathrm{Pi}}/\left(\left({\gamma}_{\mathrm{NAPL}}/{\gamma}_{\mathrm{di}}\right)\hbox{--} \left({\gamma}_{\mathrm{NAPL}}/{\gamma}_{\mathrm{s}}\right)\right) $$
(5)
$$ {S}_{\mathrm{W}\ \mathrm{i}}={W}_{\mathrm{Pi}}/\left(\left({\gamma}_{\mathrm{W}\mathrm{i}}/{\gamma}_{\mathrm{di}}\right)\hbox{--} \left({\gamma}_{\mathrm{W}\mathrm{i}}/{\gamma}_{\mathrm{s}}\right)\right) $$
(6)

or simplifying, SNAPL i = NAPLPi/A and SW i = WPi/B

where

$$ A=\left(\left({\gamma}_{\mathrm{NAPL}}/{\gamma}_{\mathrm{d}i}\right)\hbox{--} \left({\gamma}_{\mathrm{NAPL}}/{\gamma}_{\mathrm{s}}\right)\right) $$
(7)
$$ B=\left(\left({\gamma}_{\mathrm{Wi}}/{\gamma}_{\mathrm{di}}\right)\hbox{--} \left({\gamma}_{\mathrm{Wi}}/{\gamma}_{\mathrm{s}}\right)\right) $$
(8)

then,

$$ {S}_{\mathrm{F}\ i}=\left({\mathrm{NAPL}}_{\mathrm{Pi}}/A\right)+\left({\mathrm{W}}_{\mathrm{Pi}}/B\right) $$
(9)

If parameters defined in equations from (5) to (9) are inserted in Eq. (4) and then the latter is developed and solved with respect to NAPLPi, we obtain Eq. (2), where the following polynomials are defined:

$$ C=\left({W}_{\mathrm{Pi}}/B\right)\hbox{--} \left({D}_i{W}_{\mathrm{Pi}}/B\right)+\left({D}_{\mathrm{i}}{W_{\mathrm{Pi}}}^2/{B}^2\right)\hbox{--} \left({D}_{\mathrm{i}}{K}_1{W_{\mathrm{Pi}}}^2/{B}^2\right) $$
(10)
$$ D=\left[{D}_{\mathrm{i}}{W}_{\mathrm{Pi}}/ AB\right)\left]-2\ \right[{D}_{\mathrm{i}}{K}_1{W}_{\mathrm{Pi}}/(AB)\Big]+\left(1/A\right)\hbox{--} \left({D}_{\mathrm{i}}/A\right) $$
(11)
$$ E=\left({D}_{\mathrm{i}}/{A}^2\right)\hbox{--} \left({D}_{\mathrm{i}}{K}_1/{A}^2\right) $$
(12)
$$ F=\left[{D}_{\mathrm{i}}{K}_2{W}_{\mathrm{Pi}}/(AB)\right]\hbox{--} \left[{D}_{\mathrm{i}}{K}_1{W}_{\mathrm{Pi}}/(AB)\right] $$
(13)
$$ G=\left({D}_{\mathrm{i}}{K}_2/{A}^2\right)\hbox{--} \left({D}_{\mathrm{i}}{K}_1/{A}^2\right) $$
(14)
$$ H=E-G $$
(15)
$$ J=D-F $$
(16)

Note that KW/SG and KNAPL/SG are labeled as K1 and K2, respectively.

The solution to the following calculation:

$$ \mathrm{H}\ {{\mathrm{NAPL}}_{\mathrm{Pi}}}^2+\mathrm{J}\ {\mathrm{NAPL}}_{\mathrm{Pi}}+C=0 $$
(17)

is the above mentioned Eq. (2):

$$ {\mathrm{NAPL}}_{\mathrm{Pi}}=\frac{-J\pm \sqrt{J^2-4 CH}}{2H} $$

where actually two solutions, one positive and one negative, are provided, but only the positive one (deriving from the negative sign in front of the square root) is meaningful. Calculated fractions of NAPL in the pore space (NAPLPi) of sites 2a and 2b are reported in Table S1 and S2 for all the stations of the grids. Table 1 lists other parameters used for calculation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castelluccio, M., Agrahari, S., De Simone, G. et al. Using a multi-method approach based on soil radon deficit, resistivity, and induced polarization measurements to monitor non-aqueous phase liquid contamination in two study areas in Italy and India. Environ Sci Pollut Res 25, 12515–12527 (2018). https://doi.org/10.1007/s11356-018-1429-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-018-1429-0

Keywords

Navigation