Skip to main content
Log in

Strategy to identify the causes and to solve a sludge granulation problem in methanogenic reactors: application to a full-scale plant treating cheese wastewater

  • Advances in Environmental Biotechnology and Engineering 2016
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Granulation of biomass is at the basis of the operation of the most successful anaerobic systems (UASB, EGSB and IC reactors) applied worldwide for wastewater treatment. Despite of decades of studies of the biomass granulation process, it is still not fully understood and controlled. “Degranulation/lack of granulation” is a problem that occurs sometimes in anaerobic systems resulting often in heavy loss of biomass and poor treatment efficiencies or even complete reactor failure. Such a problem occurred in Mexico in two full-scale UASB reactors treating cheese wastewater. A close follow-up of the plant was performed to try to identify the factors responsible for the phenomenon. Basically, the list of possible causes to a granulation problem that were investigated can be classified amongst nutritional, i.e. related to wastewater composition (e.g. deficiency or excess of macronutrients or micronutrients, too high COD proportion due to proteins or volatile fatty acids, high ammonium, sulphate or fat concentrations), operational (excessive loading rate, sub- or over-optimal water upflow velocity) and structural (poor hydraulic design of the plant). Despite of an intensive search, the causes of the granulation problems could not be identified. The present case remains however an example of the strategy that must be followed to identify these causes and could be used as a guide for plant operators or consultants who are confronted with a similar situation independently of the type of wastewater. According to a large literature based on successful experiments at lab scale, an attempt to artificially granulate the industrial reactor biomass through the dosage of a cationic polymer was also tested but equally failed. Instead of promoting granulation, the dosage caused a heavy sludge flotation. This shows that the scaling of such a procedure from lab to real scale cannot be advised right away unless its operability at such a scale can be demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. AlPO4, Al2S3, Ca3(PO4)2, CaHPO4, Co3(PO4)2, CoHPO4, CoS, FeS, Ni3(PO4)2, NiS

  2. [H2Ssoluble] = [Stotal soluble sulphide in reactors]/[1 + 10[pH − pKa′1] + 10[2 × pH − pKa′2 − pKa′1]]. For the calculation of total soluble sulphide and the values of pH, pKa′1 and pKa′2, see Tables 3 and 4.

  3. The Gibbs free energy of their conversion to CH4 and CO2 is of −1.145 kJ/g COD for lactate and higher than −0.9 kJ/g COD for the alcohols, while it is only of 0.55 and 0.56 kJ/g COD for propionic and acetic acids (see Vanderhaegen et al. 1992).

Abbreviations

COD:

Chemical oxygen demand

D1:

Digester 1

D2:

Digester 2

DAF:

Dissolved air flotation

E Ag/AgCl :

Redox potential according to Ag/AgCl reference electrode

EGSB:

Expanded granular sludge bed

FOG:

Fats, oil and grease

FOGCOD :

FOG expressed as COD equivalent

FOGSLR :

FOG sludge loading rate

GLSS:

Gas-liquid-solid separator

HRT:

Hydraulic retention time

HT:

Homogenisation (buffer) tank

IC:

Internal circulation

LCFA:

Long-chain fatty acids

OLRs:

Sludge organic loading rate

OLRv :

Volumetric organic loading rate

PW:

Pumping well

SRT:

Solid retention time

SVI:

Sludge volumetric index

TSS:

Total suspended solids

VFA:

Volatile fatty acids

VSS:

Volatile suspended solids

V up :

Water upflow (superficial) velocity

UASB:

Upflow anaerobic sludge blanket

References

  • Abbasi T, Abbasi SA (2012) Formation and impact of granules in fostering clean energy production and wastewater treatment in upflow anaerobic sludge blanket (UASB) reactors. Renew Sustain Energ Rev 16:1696–1708

    Article  CAS  Google Scholar 

  • Ahn Y-H, Min K-S, Speece RE (2001) Full scale UASB reactor performances in the brewery industry. Environ Technol 22:463–476

    Article  CAS  Google Scholar 

  • Alphenaar PA, Sleyster R, De Reuver P, Ligthart GJ, Lettinga G (1993) Phosphorus requirement in high rate anaerobic wastewater treatment. Water Res 27:749–756

    Article  CAS  Google Scholar 

  • Amaral AL, Pereira MA, Da Motta M, Pons MN, Mota M, Ferreira EC, Alves MM (2004) Development of image analysis techniques as a tool to detect and quantify morphological changes in anaerobic sludge: II. Application to a granule deterioration process triggered by contact with oleic acid. Biotechnol Bioeng 87:194–199

    Article  CAS  Google Scholar 

  • Arcand Y, Guiot SR, Desrochers M, Chavarie C (1994) Impact of the reactor hydrodynamics and organic loading on the size and activity of anaerobic granules. Chem Eng J 56:B23–B35

    CAS  Google Scholar 

  • Ariyavongvivat E, Suraraksa B, Chaiprasert P (2015) Physicochemical and biological characteristics of enhanced anaerobic microbial granulation by synthetic and natural cationic polymers. Energy Procedia 79:851–858

    Article  CAS  Google Scholar 

  • Bhunia P, Ghangrekar MM (2008) Influence of biogas-induced mixing on granulation in UASB reactors. Biochem Eng J 41:136–141

    Article  CAS  Google Scholar 

  • Borzacconi L, López I, Passeggi M, Etchebehere C, Barcia R (2008) Sludge deterioration in a full scale UASB reactor after a pH drop working under low loading conditions. Wat Sci Tech 57:797–802

    Article  CAS  Google Scholar 

  • Cail RG, Barford JP (1985) The development of granulation in an upflow floc digester and an upflow anaerobic sludge blanket digester treating cane juice stillage. Biotechnol Lett 7:493–498

    Article  CAS  Google Scholar 

  • Callander IJ, Barford JP (1983) Precipitation, chelation, and the availability of metals as nutrients in anaerobic digestion. I. Methodology, II. Applications. Biotechnol Bioeng 25:1947–1972

    Article  CAS  Google Scholar 

  • Celis-Garcia LB, Razo-Flores E, Monroy O (2007) Performance of a down-flow fluidized-bed reactor under sulfate reduction conditions using volatile fatty acids as electron donors. Biotechnol Bioeng 97:771–779

    Article  CAS  Google Scholar 

  • Chipasa KB, Medrzycka K (2006) Behaviour of lipids in biological wastewater treatment processes. J Ind Microbiol Biotechnol 33:635–645

    Article  CAS  Google Scholar 

  • Clark JN (1988) Anaerobic digestion of whey in a pilot-scale upflow anaerobic sludge blanket digester. In: Tilche A, Rozzi A (eds) Poster-papers of the 5th international symposium on anaerobic digestion. Monduzzi Editore, Bologna, pp 489–493

    Google Scholar 

  • Costa JC, Abreu AA, Ferreira EC, Alves MM (2007) Quantitative image analysis as a diagnostic tool for monitoring structural changes of anaerobic granular sludge during detergent shock loads. Biotechnol Bioeng 98:60–68

    Article  CAS  Google Scholar 

  • Costa JC, Mesquita DP, Amaral AL, Alves MM, Ferreira EC (2013) Quantitative image analysis for the characterization of microbial aggregates in biological wastewater treatment: a review. Environ Sci Pollut Res 20:5887–5912

    Article  CAS  Google Scholar 

  • Danalewich JR, Papagiannis TG, Belyea RL, Tumbleson ME, Raskin L (1998) Characterization of dairy waste streams, current treatment practices, and potential for biological nutrient removal. Water Res 32:3555–3568

    Article  CAS  Google Scholar 

  • Dean JA (1992) Lange’s handbook of chemistry. 14 ed. McGraw Hill, New York, USA 8.6–8.11

  • El Mamouni R, Guiot SR, Mercier R, Safi B, Samson R (1995) Liming impact on granules activity of the multiplate anaerobic reactor (MPAR) treating whey permeate. Bioprocess Eng 12:47–53

    Article  Google Scholar 

  • El Mamouni R, Leduc R, Guiot SR (1998) Influence of synthetic and natural polymers on the anaerobic granulation process. Wat Sci Tech 38(8–9):341–347

    Article  Google Scholar 

  • Frankin RJ, de Pijper MAM (2007) Process for producing granular biomass. WO patent 2007/089144 A1, 10 pages

  • Grootaerd H, Defour D, Demeulemaere J, Simoens F (1999) Full-scale experience with anaerobic treatment of dairy wastewater at Belgomilk-Langemark. Med Fac Landouww Univ. Gent 64(5a):53–58

  • Grotenhuis JTC, van Lier JB, Plugge CM, Stams AJM, Zehnder AJB (1991) Effect of ethylene glycol-bis(β-aminoethyl ether)-N,N-tetraacetic acid (EGTA) on stability and activity of methanogenic granular sludge. Appl Microbiol Biotechnol 36:109–114

  • Guiot SR, Gorur SS, Kennedy KJ (1988) Nutritional and environmental factors contributing to microbial aggregation during upflow anaerobic sludge bed-filter (UBF) reactor start-up. In: Hall ER, Hobson PN (eds) Anaerobic digestion 1988, proceedings 5th international symposium. Pergamon Press, London, pp 47–53

    Google Scholar 

  • Guyot JP, Macarie H, Noyola A (1990) Anaerobic digestion of a petrochemical wastewater using the UASB process. Appl Biochem Biotechnol 24/25:579–589

  • Hernandez-Eugenio G, Fardeau ML, Patel BKC, Macarie H, Garcia JL, Ollivier B (2000) Desulfovibrio mexicanus sp. nov., a sulfate-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor treating cheese wastewaters. Anaerobe 6:305–312

    Article  CAS  Google Scholar 

  • Hwu CS (1997) Enhancing anaerobic treatment of wastewaters containing oleic acid. PhD thesis, University of Wageningen, The Netherlands, ISBN 90–5485–733-1

  • Hwu CS, Tseng SK, Yuan CY, Kulik Z, Lettinga G (1998) Biosorption of long-chain fatty acids in UASB treatment process. Water Res 32:1571–1579

    Article  CAS  Google Scholar 

  • Jeison D, Del Rio A, van Lier JB (2008) Impact of high saline wastewaters on anaerobic granular sludge functionalities. Wat Sci Tech 57(6):815–819

    Article  CAS  Google Scholar 

  • Jeong HS, Kim YH, Yeom SH, Song BK, Lee DI (2005) Facilitated UASB granule formation using organic-inorganic hybrid polymers. Process Biochem 40:89–94

    Article  CAS  Google Scholar 

  • Kim YH, Yeom SH, Ryu JY, Song BK (2004) Development of a novel UASB/CO2-stripper system for the removal of calcium ion in paper wastewater. Process Biochem 39:1393–1399

    Article  CAS  Google Scholar 

  • Kobayashi T, Xu KQ, Chiku H (2015) Release of extracellular polymeric substance and disintegration of anaerobic granular sludge under reduced sulfur compounds-rich conditions. Energies 8:7968–7985

    Article  CAS  Google Scholar 

  • Kugelman IJ, Chin KK (1971) Toxicity, synergism and antagonism in anaerobic waste treatment processes. Adv Chem Ser 105:55–90

    Article  CAS  Google Scholar 

  • Laguna A, Ouattara A, Gonzalez RO, Baron O, Famá G, El Mamouni R, Guiot S, Monroy O, Macarie H (1999) A simple and low cost technique for determining the granulometry of upflow anaerobic sludge blanket reactor sludge. Wat Sci Tech 40(8):1–8

    Article  Google Scholar 

  • Lettinga G, Hulshoff Pol LW (1991) UASB-process design for various types of wastewaters. Wat Sci Tech 24(8):87–107

    Article  CAS  Google Scholar 

  • Li J, Hu B, Zheng P, Qaisar M, Mei L (2008) Filamentous granular sludge bulking in a laboratory scale UASB reactor. Bioresour Technol 99:3431–3438

    Article  CAS  Google Scholar 

  • Maat DZ, Gorur SS (1990) Start-up and performance testing of a full scale UASB anaerobic wastewater treatment facility. In: Proceedings 44th industrial waste conference. Purdue University, Lewis Publishers Inc, Chelsea, pp 209–214

    Google Scholar 

  • Macarie H, Guyot JP (1995) Use of ferrous sulphate to reduce the redox potential and allow the start-up of UASB reactors treating slowing biodegradable compounds: application to a wastewater containing 4-methylbenzoic acid. Environ Technol 16:1185–1192

    Article  CAS  Google Scholar 

  • Mañas A, Spérandio M, Decker F, Biscans B (2012) Location and chemical composition of microbially induced phosphorus precipitates in anaerobic and aerobic granular sludge. Environ Technol 33:2195–2209

    Article  CAS  Google Scholar 

  • McHugh S, O'Reilly C, Mahony T, Colleran E, O'Flaherty V (2003) Anaerobic granular sludge bioreactor technology. Rev Environ Sci Biotechnol 2:225–245

    Article  CAS  Google Scholar 

  • McHugh S, Collins G, O’Flaherty V (2006) Long-term, high rate anaerobic biological treatment of whey wastewaters at psychrophilic temperatures. Bioresour Technol 97:1669–1678

    Article  CAS  Google Scholar 

  • Monroy O, Vázquez F, Derramadero JC, Guyot JP (1995) Anaerobic-aerobic treatment of cheese wastewater with national technology in Mexico: the case of “El Sauz”. Wat Sci Tech 32(12):149–156

    Article  Google Scholar 

  • O’Flaherty V, Lens PNL, De Beer D, Colleran E (1997) Effect of feed composition and upflow velocity on aggregate characteristics in anaerobic upflow reactors. Appl Microbiol Biotechnol 47:102–107

    Article  Google Scholar 

  • Pereboom JHF (1997) Strength characterisation of microbial granules. Wat Sci Tech 36(6–7):141–148

    Article  CAS  Google Scholar 

  • Rinzema A, Lettinga G (1988) Anaerobic treatment of sulfate containing wastewater. In: Wise DL (ed) Biotreatment systems, CRC press, vol III. Boca Raton, Florida, pp 65–109

    Google Scholar 

  • Rinzema A, van Lier J, Lettinga G (1988) Sodium inhibition of acetoclastic methanogens in granular sludge from a UASB reactor. Enz Microb Technol 10:24–32

    Article  CAS  Google Scholar 

  • Sekiguchi Y, Ohashi A, Parks DH, Yamauchi T, Tyson GW, Hugenholtz P (2015) First genomic insights into members of a candidate bacterial phylum responsible for wastewater bulking. Peer J 3:e740. doi:10.7717/perrj.740

    Article  Google Scholar 

  • Speece RE (2008) Anaerobic biotechnology and odor/corrosion control for municipalities and industries. Chapter 16, trace metals. Archae press, Nashville, Tennessee, USA, pp 405-430

  • Standard Methods for the Examination of Water and Wastewater (1995) 19th edn. American Public Health Association/American Water Works Association/Water Environment Federation, Washington DC

  • Thaveersi J, Gernaey K, Kaonga B, Boucneau G, Verstraete W (1994) Organic and ammonium nitrogen and oxygen in relation to granular sludge growth in lab-scale UASB reactors. Wat Sci Tech 30(12):43–53

    Article  Google Scholar 

  • Thaveersi J, Daffonchio D, Liessens B, Vandermeren P, Verstraete W (1995) Granulation and sludge bed stability in upflow anaerobic sludge bed reactors in relation to surface thermodynamics. Appl Environ Microbiol 61:3681–3686

    Google Scholar 

  • van Lier JB, van der Zee FP, Frijters CTMJ, Ersahin ME (2015) Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev Environ Sci Biotechnol 14:681–702

    Article  CAS  Google Scholar 

  • Vanderhaegen B, Ysebaert E, Favere K, van Wambeke M, Peeters T, Pánic V, Vandenlangerbergh V, Verstraete W (1992) Acidogenesis in relation to in-reactor granule yield. Wat Sci Tech 25(7):21–30

    Article  CAS  Google Scholar 

  • Visser A, Alphenaar PA, Gao Y, van Rossum G, Lettinga G (1993) Granulation and immobilisation of methanogenic and sulfate-reducing bacteria in high-rate anaerobic reactors. Appl Microbiol Biotechnol 40:575–581

    Article  CAS  Google Scholar 

  • Wang JS, Hu YY, Wu CD (2005) Comparing the effect of bioflocculant with synthetic polymers on enhancing granulation in UASB reactors for low-strength wastewater treatment. Water SA 31:177–182

    Article  Google Scholar 

  • Yu HQ, Fang HHP (2001) Acidification of mid- and high-strength dairy wastewaters. Water Res 35:3697–3705

    Article  CAS  Google Scholar 

  • Zandvoort MH, van Hullenbusch ED, Gieteling J, Lens PNL (2006) Granular sludge in full-scale anaerobic bioreactors: trace element content and deficiencies. Enz Microb Technol 39:337–346

    Article  CAS  Google Scholar 

  • Zitomer DH, Burns RT, Duran M, Vogel DS (2007) Effect of sanitizers, rumensin and temperature on anaerobic digester biomass. Trans ASABE 50:1807–1813

    Article  Google Scholar 

Download references

Acknowledgements

For this study, Maricela Esquivel was financially supported by the cheese factory and Acela Laguna and Olivier Baron by IRD. The authors thank the cheese factory and particularly its employees Paulino Rivas, Gerardo Gonzalez, Omar Reyes and Abelardo Villareal for their interest and kind assistance during the realisation of this project. They also thank Sébastien Prunier and Graciela Famá for their technical help at the early stage of the work, Germán Buitrón and Ilangovan Kuppusamy for the loan of a Hach spectrophotometer and a jar test equipment, respectively, and Mark Spanevello for the help with English language.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Macarie.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macarie, H., Esquivel, M., Laguna, A. et al. Strategy to identify the causes and to solve a sludge granulation problem in methanogenic reactors: application to a full-scale plant treating cheese wastewater. Environ Sci Pollut Res 25, 21318–21331 (2018). https://doi.org/10.1007/s11356-017-9818-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9818-3

Keywords

Navigation