Skip to main content

Advertisement

Log in

Effects of BPF on steroid hormone homeostasis and gene expression in the hypothalamic–pituitary–gonadal axis of zebrafish

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Bisphenol F (BPF) has been frequently detected in various environmental compartments, and previous studies found that BPF exhibits similar estrogenic and anti-androgenic effects on the mammalian endocrine system to those of bisphenol A (BPA). However, the potential disrupting effects of BPF on aquatic organisms and the underling disrupting mechanisms have not been investigated. In this study, the potential disrupting mechanisms of BPF on the hypothalamic–pituitary–gonadal (HPG) axis and liver were probed by employing the OECD 21-day short-term fecundity assay in zebrafish. The results show that BPF exposure (1 mg/L) impaired the reproductive function of zebrafish, as exemplified by alterations to testicular and ovarian histology of the treated zebrafish. Homogenate testosterone (T) levels in male zebrafish decreased in a concentration-dependent manner, and 17β-estradiol (E2) levels increased significantly when fish were exposed to 0.1 and 1 mg/L BPF. The real-time polymerase chain reaction was performed to examine gene expression in the HPG axis and liver. Hepatic vitellogenin expression was significantly upregulated in males, suggesting that BPF possesses estrogenic activity. The disturbed hormone balance was enhanced by the significant changes in gene expression along the HPG axis. These alterations suggest that BPF leads to adverse effects on the endocrine system of teleost fish, and that these effects were more prominent in males than in females.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andersson E, Nijenhuis W, Male R, Swanson P, Bogerd J, Taranger GL, Schulz RW (2009) Pharmacological characterization, localization and quantification of expression of gonadotropin receptors in Atlantic salmon (Salmo salar L.) ovaries. Gen Comp Endocrinol 163(3):329–339

    Article  CAS  Google Scholar 

  • Ankley GT, Villeneuve DL (2006) The fathead minnow in aquatic toxicology: past, present and future. Aquat Toxicol 78(1):91–102

    Article  CAS  Google Scholar 

  • Joel CN, Colette V, Elisabeth P, Charlier TD, Olivier K, Pascal C (2016) Estrogenic effects of several BPA analogs in the developing zebrafish brain. Front Neurosci 10:112

    Google Scholar 

  • Chen D, Kannan K, Tan H, Zheng Z, Feng YL, Wu Y, Widelka M (2016) Bisphenol analogues other than BPA: environmental occurrence, human exposure, and toxicity—a review. Environ Sci Technol 50(11):5438–5453

    Article  CAS  Google Scholar 

  • Clelland E, Peng C (2009) Endocrine/paracrine control of zebrafish ovarian development. Mol Cell Endocrinol 312(1):42–52

    Article  CAS  Google Scholar 

  • Christianson-Heiska IL, Haavisto T, Paranko J, Bergelin E, Isomaa B (2008) Effects of the wood extractives dehydroabietic acid and betulinol on reproductive physiology of zebrafish (Danio rerio)—a two-generation study. Aquat Toxicol 86(3):388–396

    Article  CAS  Google Scholar 

  • Daouk T, Larcher T, Roupsard F, Lyphout L, Rigaud C, Ledevin M, Loizeau V, Cousin X (2011) Long-term food-exposure of zebrafish to PCB mixtures mimicking some environmental situations induces ovary pathology and impairs reproduction ability. Aquat Toxicol 105(3):270–278

    Article  CAS  Google Scholar 

  • European Commission, 2011. Bisphenol a: EU ban on baby bottles to enter into force tomorrow

  • Filby AL, van Aerle R, Duitman J, Tyler CR (2008) The kisspeptin/gonadotropin-releasing hormone pathway and molecular signaling of puberty in fish. Biol Reprod 78(2):278–289

    Article  CAS  Google Scholar 

  • FDA (2008) Draft assessment of Bisphenol A for use in food contact applications. Food and Drug Administration, U.S.

    Google Scholar 

  • Goldinger DM, Demierre AL, Zoller O, Rupp H, Reinhard H, Magnin R, Becker TW, Bourqui-Pittet M (2015) Endocrine activity of alternatives to BPA found in thermal paper in Switzerland. Reg Toxicol Pharmacol 71(3):453–462

    Article  CAS  Google Scholar 

  • Han XB, Yuen KW, Wu RS (2013) Polybrominated diphenyl ethers affect thereproduction and development, and alter the sex ratio of zebrafish (Daniorerio). Environ Pollut 182:120–126

    Article  CAS  Google Scholar 

  • Ji K, Hong S, Kho Y, Choi K (2013) Effects of bisphenol S exposure on endocrine functions and reproduction of zebrafish. Environ Sci Technol 47(15):8793–8800

    Article  CAS  Google Scholar 

  • Keiter S, Baumann L, Färber H, Holbech H, Skutlarek D, Engwall M et al (2012) Long-term effects of a binary mixture of perfluorooctane sulfonate (PFOS) and bisphenol A (BPA) in zebrafish (Danio rerio). Aquat Toxicol 118–119:116–129

    Article  Google Scholar 

  • Kinnberg, K., Korsgaard, B., Bjerregaard, P. 2003. Effects of octylphenol and 17 beta-estradiol on the gonads of guppies (poecilia reticulata) exposed as adults via the water or as embryos via the mother. Comp Biochem Physiol Part C Toxicol Pharmacol 134(1), 45–55

  • Kwok HF, So WK, Wang Y, Ge W (2005) Zebrafish gonadotropins and their receptors: I. Cloning and characterization of zebrafish follicle-stimulating hormone and luteinizing hormone receptors—evidence for their distinct functions in follicle development. Biol Reprod 72(6):1370–1381

    Article  CAS  Google Scholar 

  • Lee S, Liao C, Song GJ, Ra K, Kannan K, Moon HB (2015) Emission of bisphenol analogues including bisphenol A and bisphenol F from wastewater treatment plants in Korea. Chemosphere 119:1000–1006

    Article  CAS  Google Scholar 

  • Le Fol V, Aïtaïssa S, Sonavane M, Porcher JM, Balaguer P, Cravedi JP, Zalko D, Brion F (2017) In vitro and in vivo estrogenic activity of BPA, BPF and BPS in zebrafish-specific assays. Ecotoxicol Environ Saf 142:150–156

    Article  Google Scholar 

  • Liao C, Liu F, Guo Y, Moon HB, Nakata H, Wu Q, Kannan K (2012a) Occurrence of eight bisphenol analogues in indoor dust from the United States and several Asian countries: implications for human exposure. Environ Sci Technol 46(16):9138–9145

    Article  CAS  Google Scholar 

  • Liao C, Liu F, Moon HB, Yamashita N, Yun S, Kannan K (2012b) Bisphenol analogues in sediments from industrialized areas in the United States, Japan, and Korea: spatial and temporal distributions. Environ Scie Technol 46(21):11558–11565

    Article  CAS  Google Scholar 

  • Liao C, Kannan K (2013) Concentrations and profiles of bisphenol A and other bisphenol analogues in foodstuffs from the United States and their implications for human exposure. J Agric Food Chem 61(19):4655–4662

    Article  CAS  Google Scholar 

  • Liu C, Yu L, Deng J, Lam PK, Wu RS, Zhou B (2009) Waterborne exposure to fluorotelomer alcohol 6: 2 FTOH alters plasma sex hormone and gene transcription in the hypothalamic–pituitary–gonadal (HPG) axis of zebrafish. Aquat Toxicol 93(2):131–137

    Article  CAS  Google Scholar 

  • Liu X, Ji K, Jo A, Moon HB, Choi K (2013) Effects of TDCPP or TPP on gene transcriptions and hormones of HPG axis, and their consequences on reproduction in adult zebrafish (Danio rerio). Aquat Toxicol 134:104–111

    Google Scholar 

  • Mandich A, Bottero S, Benfenati E, Cevasco A, Erratico C, Maggioni S, Massari A, Pedemonte F, Vigano L (2007) In vivo exposure of carp to graded concentrations of bisphenol A. Gen Comp Endocrinol 153(1):15–24

    Article  CAS  Google Scholar 

  • Molinamolina JM, Amaya E, Grimaldi M, Sáenz JM, Real M, Fernández MF, Balaguer P, Olea N (2013) In vitro study on the agonistic and antagonistic activities of bisphenol-S and other bisphenol-A congeners and derivatives via nuclear receptors. Toxicol Appl Pharmacol 272(1):127–136

    Article  CAS  Google Scholar 

  • Naderi M, Wong MY, Gholami F (2014) Developmental exposure of zebrafish (Danio rerio) to bisphenol-S impairs subsequent reproduction potential and hormonal balance in adults. Aquat Toxicol 148(2):195–203

    Article  CAS  Google Scholar 

  • Nash JP, Kime DE, Van der Ven LT, Wester PW, Brion F, Maack G, Allner PS, Tyler CR (2004) Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect:1725–1733

  • Organization for Economic Co-operation and Development (2009a) Fish short term reproduction assay. OECD guideline 229. Paris, France

  • Organization for Economic Co-operation and Development (2009b) 21-day Fish Assay. OECD guideline 230. Paris, France

  • Pivnenko K, Pedersen GA, Eriksson E, Astrup TF (2015) Bisphenol a and its structural analogues in household waste paper. Waste Manag 44:39–47

    Article  CAS  Google Scholar 

  • Rochester JR (2013) Bisphenol A and human health: a review of the literature. Reprod Toxicol 42:132–155

    Article  CAS  Google Scholar 

  • Rochester JR, Bolden AL (2015) Bisphenol S and F: a systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect 123(7):643–650

    Google Scholar 

  • Segner H (2009) Zebrafish (Danio rerio) as a model organism for investigating endocrine disruption. Comp Biochem Physiol C 149(2):187–195

    Google Scholar 

  • Shang EHH, Yu RMK, Wu RSS (2006) Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ Sci Technol 40:3118–3122

    Article  CAS  Google Scholar 

  • Shi J, Jiao Z, Zheng S, Li M, Zhang J, Feng Y, Yin J, Shao B (2015) Long-term effects of bisphenol AF (BPAF) on hormonal balance and genes of hypothalamus-pituitary-gonad axis and liver of zebrafish (Danio rerio), and the impact on offspring. Chemosphere 128:252–257

    Article  CAS  Google Scholar 

  • Sohoni PCRT, Tyler CR, Hurd K, Caunter J, Hetheridge M, Williams T, Woods C, Sumpter JP (2001) Reproductive effects of long-term exposure to bisphenol A in the fathead minnow (Pimephales promelas). Environ Sci Technol 35(14):2917–2925

    Article  CAS  Google Scholar 

  • Song M, Liang D, Liang Y, Chen M, Wang F, Wang H, Jiang G (2014a) Assessing developmental toxicity and estrogenic activity of halogenated bisphenol A on zebrafish (Danio rerio). Chemosphere 112:275–281

    Article  CAS  Google Scholar 

  • Song S, Song M, Zeng L, Wang T, Liu R, Ruan T, Jiang G (2014b) Occurrence and profiles of bisphenol analogues in municipal sewage sludge in china. Environ Pollut 186(1):14–19

    Article  CAS  Google Scholar 

  • Stroheker T, Chagnon MC, Pinnert MF, Berges R, Canivenc-Lavier MC (2003) Estrogenic effects of food wrap packaging xenoestrogens and flavonoids in female Wistar rats: a comparative study. Reprod Toxicol 17:421–432

    Article  CAS  Google Scholar 

  • Uren Webster TM, Laing LV, Florance H, Santos EM (2014) Effects of glyphosate and its formulation, roundup, on reproduction in zebrafish (Danio rerio). Environ Sci Technol 48(2):1271–1279

    Article  CAS  Google Scholar 

  • Van den Belt K, Verheyen R, Witters H (2001) Reproductive effects of ethynylestradiol and 4t-octylphenol on the zebrafish (Danio rerio). Arch Environ Contam Toxicol 41(4):458–467

    Article  Google Scholar 

  • Viganò L, Benfenati E, Bottero S, Cevasco A, Monteverde M, Mandich A (2010) Endocrine modulation, inhibition of ovarian development and hepatic alterations in rainbow trout exposed to polluted river water. Environ Pollut 158(12):3675–3683

    Article  Google Scholar 

  • Yamaguchi A, Ishibashi H, Arizono K, Tominaga N (2015) In vivo and in silico analyses of estrogenic potential of bisphenol analogs in medaka (oryzias latipes) and common carp (cyprinus carpio). Ecotoxicol Environ Saf 120:198–205

    Article  CAS  Google Scholar 

  • Yamasaki K, Noda S, Imatanaka N, Yakabe Y (2004) Comparative study of the uterotrophic potency of 14 chemicals in a uterotrophic assay and their receptor-binding affinity. Toxicol Lett 146:111–120

    Article  CAS  Google Scholar 

  • Yamasaki K, Takeyoshi Y, Yakabe Y, Sawaki M, Imatanaka N, Takatsuki M (2002) Comparison of gene reporter assay and immature rat uterotrophic assay of twenty-three chemicals. Toxicology 170:21–30

    Article  CAS  Google Scholar 

  • Yamazaki E, Yamashita N, Taniyasu S, Lam J, Lam PK, Moon HB, Jeong Y, Kannan P, Achyuthan H, Munuswamy N, Kannan K (2015) Bisphenol A and other bisphenol analogues including BPS and BPF in surface water samples from Japan, China, Korea and India. Ecotoxicol Environ Saf 122:565–572

    Article  CAS  Google Scholar 

  • Yang Q, Yang X, Liu J, Ren W, Chen Y, Shen S (2017) Exposure to bisphenol B disrupts steroid hormone homeostasis and gene expression in the hypothalamic–pituitary–gonadal axis of zebrafish. Water Air Soil Pollut 228(3):112

    Article  Google Scholar 

  • Yang X, Liu Y, Li J, Chen M, Peng D, Liang Y, Zhang J, Jiang G (2014b) Exposure to Bisphenol AF disrupts sex hormone levels and vitellogenin expression in zebrafish. Environ Toxicol 31(3):285–294

    Article  Google Scholar 

  • Yang Y, Guan J, Yin J, Shao B, Li H (2014a) Urinary levels of bisphenol analogues in residents living near a manufacturing plant in south China. Chemosphere 112:481–486

    Article  CAS  Google Scholar 

  • Yön ND, Akbulut C (2014) Histological changes in zebrafish (Danio rerio) ovaries following administration of bisphenol A. Pakistan J Zool 46(4):1153–1159

    Google Scholar 

  • Zhou X, Kramer JP, Calafat AM, Ye X (2014) Automated on-line column-switching high performance liquid chromatography isotope dilution tandem mass spectrometry method for the quantification of bisphenol a, bisphenol F, bisphenol S, and 11 other phenols in urine. J Chromatogr B Analytic Technologi Biomedical Life Sci 944:152–156

    Article  CAS  Google Scholar 

  • Zoller O, Brüschweiler BJ, Magnin R, Reinhard H, Rhyn P, Rupp H, Zeltnenr S, Felleisen R (2015) Natural occurrence of bisphenol F in mustard. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33(1):137–146

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Jiangsu Province (General Program) (No. BK20151100), National Natural Science Foundation of China (No. 21507038), and Graduate Research and Innovation Projects of Jiangsu Province (No. KYLX15_0813).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jining Liu or Yingwen Chen.

Additional information

Responsible editor: Cinta Porte

Electronic supplementary material

ESM 1

(DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Q., Yang, X., Liu, J. et al. Effects of BPF on steroid hormone homeostasis and gene expression in the hypothalamic–pituitary–gonadal axis of zebrafish. Environ Sci Pollut Res 24, 21311–21322 (2017). https://doi.org/10.1007/s11356-017-9773-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9773-z

Keywords

Navigation