Skip to main content

Advertisement

Log in

Seasonal variation of chemical composition and source apportionment of PM2.5 in Pune, India

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Particulate matter with size less than or equal to 2.5 μm (PM2.5) samples were collected from an urban site Pune, India, during April 2015 to April 2016. The samples were analyzed for various chemical constituents, including water soluble inorganic ions, organic carbon (OC), and elemental carbon (EC). The yearly mean total mass concentration of PM2.5 at Pune was 37.3 μg/m3, which is almost four times higher than the annual WHO standard (10 μg/m3), and almost equal to that recommended by the Central Pollution Control Board, India (40 μg/m3). Measured (OC, EC) and estimated organic matter (OM) were the dominant component (56 ± 11%) in the total particulate matter which play major role in the regional atmospheric chemistry. Total measured inorganic components formed about 35% of PM2.5. Major chemical contributors to PM2.5 mass were OC (30%), SO4 2− (13%), and Cl and EC (9% each). The high ratios of OC/EC demonstrated the existence of secondary organic carbon. The air mass origin and correlations between the various components indicate that long range transport of pollutants from Indo-Gangetic Plain (IGP) and Southern part of the Arabian Peninsula might have contributed to the high aerosol mass during the dry and winter seasons. To our knowledge, this is the first systematic study that comprehensively explores the chemical characterization and source apportionment of PM2.5 aerosol speciation in Pune by applying multiple approaches based on a seasonal perspective. This study is broadly applicable to understanding the differences in anthropogenic and natural sources in the urban environment of particle air pollution over this region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfaro SC, Gaudichet A, Rajot JL, Gomes L, Maille M, Cachier H (2002) Variability of aerosol size-resolved composition at an Indian coastal site during INDOEX intensive field phase. J Geophys Res 108(D8):4235. doi:10.1029/2002JD002645

    Article  Google Scholar 

  • Ali K, Budhavant KB, Safai PD, Rao PSP (2012) Seasonal factors influencing in chemical composition of total suspended particles at Pune, India. Sci Total Environ 414:257–267

    Article  CAS  Google Scholar 

  • Andreae MO (1983) Soot carbon and excess fine potassium: long-range transport of combustion-derived aerosols. Science 220(4602):1148–1151

    Article  CAS  Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycles 15:955–966

    Article  CAS  Google Scholar 

  • Atkinson RW, Mills IC, Walton HA, Anderson HR (2015) Fine particle components and health—a systematic review and meta-analysis of epidemiological time series studies of daily mortality and hospital admissions. J Exp Sci Environ Epidemiol 25:208–214

    Article  CAS  Google Scholar 

  • Begum BA, Hossain A, Nahar N, Markwitz A, Hopke PK (2012) Organic and black carbon in PM2.5 at an urban site at Dhaka, Bangladesh. Aerosol Air Qual Res 12:1062–1072

    CAS  Google Scholar 

  • Birch ME, Cary RA (1996) Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci Technol 25:221–224

    Article  CAS  Google Scholar 

  • Bond TC, Bhardwaj E, Dong R, Jogani R, Jung S, Roden C, Streets DG, Trautmann NM (2007) historical emissions of black and organic carbon aerosol from energy related combustion. Glob Biogeochem Cycles 21, GB2018:1850–2000

  • Bond TC, Doherty SJ, Fahey DW, Forster PM, Berntsen T et al (2013) Bounding the role of black carbon in the climate system: a scientific assessment. J Geophys Res Atmos 118(11):5380–5552. doi:10.1002/jgrd.50171

    Article  CAS  Google Scholar 

  • Budhavant KB, Rao PSP, Safai PD, Ali K (2011) Influence of local sources on rainwater chemistry over Pune region, India. Atmos Res 100:121–131

    Article  CAS  Google Scholar 

  • Budhavant K, Andersson A, Bosch C, Krusa M, Kirillova EN et al (2015a) Radiocarbon-based source apportionment of elemental carbon aerosols at two south Asian receptor observatories over a full annual cycle. Environ res Lett 10:064004. doi:10.1088/1748-9326/10/6/064004

    Article  Google Scholar 

  • Budhavant KB, Andersson A, Bosch C, Krusa M, Murthaza A, Zahid Orjan G (2015b) Local vs long-range transport contributions of PM2.5 particles over the Maldives, in the northern Indian Ocean. Sci Total Environ 536:72–78

    Article  CAS  Google Scholar 

  • Budhavant KB, Rao PSP, Safai PD, Leck L, Rodhe H (2016) Black carbon in cloud-water and rain water during monsoon season at a high altitude station in India. Atmos Environ 129:256–264

    Article  CAS  Google Scholar 

  • Cachier H, Ducret J, Bremond MP, Yoboue V, Lacaux JP, Gaudichet A et al (1991) Biomass burning aerosols in a savanna region of the Ivory Coast, in global biomass burning. In: Levine JS (ed) MIT Press, Cambridge, pp 174–184

  • Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Pureell RG (1993) The DRI thermal/optical reflectance carbon analysis system: descriptions in US air quality studies. Atmos Environ A27:1185–1201

    Article  Google Scholar 

  • Deshmukh DK, Deb MK, Tsai YI, Mkoma SL (2011) Water soluble ions in PM2.5 and PM1 aerosols in Durg City, Chhattisgarh, India. Aerosol Air Qual Res 11:696–708

    CAS  Google Scholar 

  • Draxler RR, Rolph GD (2013) HYSPLIT model access via NOAA ARL READY website. http://ready.Arl.Noaa.Gov/HYSPLIT.Php (NOAA, Air Resources Laboratory, Silver Spring, MD)

  • Feng Y, Chen Y, Guo H, Zhi G, Xiong S, Li J, Sheng G, Fu J (2009) Characteristics of organic and elemental carbon in PM2.5 samples in shanghai, China. Atmos Res 92:434–442

    Article  CAS  Google Scholar 

  • Ferek RJ, Reid JS, Hobbs PV, Blake DR, Liousse C (1998) Emission factors of hydrocarbons, halocarbons, trace gases and particles from biomass burning in Brazil. J Geophys Res 103:32107–32118

    Article  CAS  Google Scholar 

  • Forouzanfar MH, Alexander L, Anderson HR, Bachman VF, Biryukov S et al (2015) Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in countries, 1990–2013: a systematic analysis for the global burden of disease study 2013. Lancet 386(10010):2287–2323

    Article  Google Scholar 

  • Goldberg ED, Brecker WS, Gross MG, Turekian KK (1971) Marine chemistry in radioactivity in the marine environment. National Academy of Sciences, Washington 137

    Google Scholar 

  • He Q, Yan Y, Guo L, Zhang Y, Zhang G, Wang X (2017) Characterization and source analysis of water-soluble inorganic ionic species in PM2.5 in Taiyuan city, China. Atmos Res 184:48–55

    Article  CAS  Google Scholar 

  • Horn MK, Adams JAS (1966) Computer-derived geochemical balances and element abundance. Geochim Cosmochim Acta 30:270–297 Pergamon Press Ltd. Printed in Northern Ireland

    Article  Google Scholar 

  • IPCC (2013) Climate change 2013. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) The physical science basis contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Jacobson MC, Hansson HC, Noone KJ, Charlson RJ (2000) Organic atmospheric aerosols: review and state of the science. Rev Geophys 38:267–294

    Article  CAS  Google Scholar 

  • Jimenez J, Canagaratna M, Donahue N, Prevot A, Zhang Q, Kroll J et al (2009) Evolution of organic aerosols in the atmosphere. Science 326:1525–1529

    Article  CAS  Google Scholar 

  • Kroll JH, Donahue NM, Jimenez JL, Kessler SH, Canagaratna MR et al (2011) Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol. Nat Chem 3:133–139. doi:10.1038/NCHEM.948

    Article  CAS  Google Scholar 

  • Kumar A, Attri AK (2016) Biomass combustion a dominant source of carbonaceous aerosols in the ambient environment of western Himalayas. Aerosol Air Qual Res 16:519–529

    Article  CAS  Google Scholar 

  • Kumar R, Srivastava SS, Kumari KM (2007) Characteristics of aerosols over suburban and urban site of semiarid region in India: seasonal and spatial variations. Aerosol Air Qual Res 7(4):531–549

    Article  CAS  Google Scholar 

  • Matsumoto K, Tanaka H (1996) Formation and dissociation of atmospheric particulate nitrate and chloride: an approach based on phase equilibrium. Atmos Environ 30(4):639–648

    Article  CAS  Google Scholar 

  • Mkoma S, Kawamura K, Fu P (2013) Contributions of biomass/biofuel burning to organic aerosols and particulate matter in Tanzania, East Africa, based on analyses of ionic species, organic and elemental carbon, levoglucosan and mannosan. Atmos Chem Phys 13:10325–10338

    Article  Google Scholar 

  • Pant P, Shukla A, Kohl SD, Chow JC, Watson JG, Harrison RM (2015) Characterization of ambient PM2.5 at a pollution hotspot in New Delhi, India and inference of sources. Atmos Environ 109:178–189

    Article  CAS  Google Scholar 

  • Paris R, Desboeufs KV, Formenti P, Nava S, Chou C (2010) Chemical characterisation of iron in dust and biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility. Atmos Chem Phys 10:4273–4282

    Article  CAS  Google Scholar 

  • Pavuluri CM, Kawamura K, Aggarwal SG, Swaminathan T (2011) Characteristics, seasonality and sources of carbonaceous and ionic components in the tropical aerosols from Indian region. Atmos Chem Phys 11:8215–8230

    Article  CAS  Google Scholar 

  • Rahman SA, Hamzah MS, Elias MS, Salim NAA, Hashim A, Shukor S, Siong WB, Wood AK (2015) A long term study on characterization and source apportionment of particulate pollution in Klang Valley, Kuala Lumpur. Aerosol Air Qual Res 15:2291–2304

    Google Scholar 

  • Raja S, Biswas KF, Husain L, Hopke PK (2009) Source apportionment of the atmospheric aerosol in lahore, Pakistan. Water Air Soil Pollut 208(1–4):43–57

    Google Scholar 

  • Rajput P, Sarin MM, Rengarajan R (2011) High precision GC-MS analysis of atmospheric polycyclic aromatic hydrocarbons (PAHs) and isomer ratios from biomass burning emissions. J Environ Prot 2:445–453

    Article  CAS  Google Scholar 

  • Rajput P, Sarin M, Sharma D, Singh D (2014) Characteristics and emission budget of carbonaceous species from post-harvest agricultural-waste burning in source region of the indo-Gangetic plain. Tellus B66:21026

    Article  Google Scholar 

  • Ram K, Sarin MM (2010) Spatio-temporal variability in atmospheric abundances of EC, OC and WSOC over northern India. J Aerosol Sci 41(1):88–98

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM, Hegde P (2008) Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: sources and temporal variability. Atmos Environ 42:6785–6796

    Article  CAS  Google Scholar 

  • Ram K, Sarin MM, Tripathi SN (2010) A 1 year record of carbonaceous aerosols from an urban site in the indo Gangetic plain: characterization, sources, and temporal variability. J Geophys Res 115:D24313. doi:10.1029/2010JD014188

    Article  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci. doi:10.1038/ngeo156

  • Rao PSP, Tiwari S, Matwale JL, Pervez S, Tunved P, Safai PD, Srivastava AK, Bisht DS, Singh S, Hopke PK (2016) Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols. Atmos Environ 146:90–99

    Article  CAS  Google Scholar 

  • Saarikoski S, Timonen H, Saarnio K, Aurela M, Jarvi L, Keronen P, Kerminen VM, Hillamo R (2008) Sources of organic carbon in fine particulate matter in northern European urban air. Atmos Chem Phys 8:6281–6295

    Article  CAS  Google Scholar 

  • Safai PD, Budhavant KB, Rao PSP, Ali K, Sinha A (2010) Source characterization for aerosol constituents and changing roles of calcium and ammonium aerosols in the neutralization of aerosol acidity at a semi-urban site in SW India. Atmos Res 98:78–88

    Article  CAS  Google Scholar 

  • Safai PD, Raju MP, Budhavant KB, Rao PSP (2013) Devara PCS (2013) long term studies on characteristics of black carbon aerosols over a tropical urban station Pune. India Atmos Res 132-133:173–184

    Article  CAS  Google Scholar 

  • Safai PD, Devara PCS, Raju MP, Vijayakumar K, Rao PSP (2014) Relationship between black carbon and associated optical, physical and radiative properties of aerosols over two contrasting environments. Atmos Res 149:292–299

  • Satsangi A, Pachauri T, Singla V, Lakhani A, Kumari MK (2012) Organic and elemental carbon aerosols at a suburban site. Atmos Res 113:13–21

    Article  CAS  Google Scholar 

  • Satsangi A, Pachauri T, Singla V, Lakhani A, Kumari MK (2013) Water soluble ionic species in atmospheric aerosols: concentrations and sources at Agra in the indo-Gangetic plain (IGP). Aerosol Air Qual Res 13:1877–1889

    CAS  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (1999) Measurement of emissions from air pollution sources. 2. C1 through C30 organic compounds from medium duty diesel trucks. Environ Sci Technol 33:1578–1587

    Article  CAS  Google Scholar 

  • Schauer JJ, Kleeman MJ, Cass GR, Simoneit BRT (2002) Measurement of emissions from air pollution sources. 5. C1eC32 organic compounds from gasoline-powered motor vehicles. Environ Sci Technol 36:1169–1180

    Article  CAS  Google Scholar 

  • Srinivas B, Sarina MM (2014) PM2.5, EC and OC in atmospheric outflow from the indo-Gangetic plain: temporal variability and aerosol organic carbon-to-organic mass conversion factor. Sci Total Environ 487:196–205

    Article  CAS  Google Scholar 

  • Tsigaridis K, Krol M, Dentener FJ, Balkanski Y, Lathiere J, Metzger S, Hauglustaine DA, Kanakidou M (2006) Change in global aerosol composition since preindustrial times. Atmos Chem Phys 6:5143–5162

    Article  CAS  Google Scholar 

  • Turpin BJ, Lim HJ (2001) Species contributions to PM2.5 mass concentrations: revisiting common assumptions for estimating organic mass. Aerosol Sci Technol 35:602–610

    Article  CAS  Google Scholar 

  • Venkataraman C, Reddy CK, Jsson S, Reddy MS (2002) Aerosol size and chemical characteristics at Mumbai, India, during the INDOEX-IFP (1999). Atmos Environ 36:1979–1991

    Article  CAS  Google Scholar 

  • Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39:971–974

    Article  CAS  Google Scholar 

  • WHO (2014) Outdoor air pollution in the world cities. World Health Organization, Geneva http://www.who.int/phe/health_topics/outdoorair/databases/en

    Google Scholar 

  • Winchester JW, Nifong GD (1971) Water pollution in Lake Michigan by trace elements from pollution aerosol fallout. Water Air Soil Pollut 1:50–64

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the Director, Indian Institute of Tropical Meteorology, Pune, for encouragement to undertake this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishnakant B. Budhavant.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawhane, R.D., Rao, P.S.P., Budhavant, K.B. et al. Seasonal variation of chemical composition and source apportionment of PM2.5 in Pune, India. Environ Sci Pollut Res 24, 21065–21072 (2017). https://doi.org/10.1007/s11356-017-9761-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9761-3

Keywords

Navigation