Skip to main content

Advertisement

Log in

Potential toxic trace element (PTE) contamination in Baoji urban soil (NW China): spatial distribution, mobility behavior, and health risk

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Rapid urbanization and industrialization may cause increased exposure levels to potential toxic trace elements (PTEs) and associated health risks for population living in cities. The main objectives of this study are to investigate systematically the occurrence, source, fate, and risk of PTE contamination from industrial influence in Baoji urban soil. Seven PTE levels (Pb, Zn, Cu, Cr, V, Sb, and As) were surveyed in 50 composite samples from Baoji urban soil by wavelength dispersive X-ray fluorescence spectrometry. Results reveal that the long-term industrial activities have increased PTEs Pb (409.20 mg/kg mean value), Cu (107.19 mg/kg mean value), Zn (374.47 mg/kg mean value), and Sb (26.00 mg/kg mean value) to enrich in urban soil at the different extents. The same results concur with the significant similarity of spatial distribution patterns of Pb, Zn, Cu, and Sb (slightly similar distribution) interpolated by GIS, implying a considerable Pb, Zn, Cu, and Sb contamination pool in urban soil disturbance from local metallic industrial activities. Whereas As in study area mainly controls parent material leaching and therefore has natural sources. Cr and V with the heterogeneous spatial distributions are possibly inclined to coal combustion sources. Those conclusions are also confirmed by the results of multivariate analysis. The chemical forms of PTEs fractionated by BCR three-stage sequential extraction procedure show that Pb and Cu are highly associated to the reducible phase (62.55 and 36.41%, respectively). However, Zn is highly associated to the oxidizable phase (33.68%), and a significant concentration is associated to acid and water extractable fractionation of 15.93% for Zn and 34.40% for Pb. In contrast, As, Cr, V, and Sb are mainly bound to the residual phase (>65% for all elements) with low concentrations retained to water extractable fractionation. The health risk assessed by a new classification Modified Integrate Risk Assessment Code (MI-RAC) reveals that the Pb poses the extremely high risk for human health than others. The results of PTE leaching in organic acids (artificial chelating agent and LMMOAs) indicate that low pH and more carboxyl groups of organic acid can quickly increase the PTEs release from soil and induce more mobility. By comparison, DTPA and EDTA are the effective extractant for Pb and Sb. The leaching kinetics of most PTEs are best described with the Elovich equation model and which involve the ligand exchange (LE) and ligand-enhanced dissolution (LED) two major process. It is a conclusion that long-term metallic industrial activities would accelerate the PTE accumulations in Baoji urban soil and enhance their mobility in a local scale. The considerable mobility and extremely high risk of Pb in Baoji ecoenvironment should be paid more attentions, and the phytoremediation with organic acid leaching assistant could be used to reduce total metal content of multiPTE contaminants in Baoji soils. The research will give the scientific knowledge for controlling the pollution of PTEs in urban soil and can be used as guidance to control the soil pollution in similar cities worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adachi K, Tainosho Y (2004) Characterization of heavy metal particles embedded in tire dust. Environ Int 30:1009–1017

    Article  CAS  Google Scholar 

  • Adriano, D.C. (2001). Trace elements in terrestrial environments, biogeochemistry, bioavailability, and risks of metals. New York

  • Ajmone-Marsan F, Biasioli M, Kralj T, Grcman H, Davidson CM, Hursthouse AS (2008) Metals in particle-size fractions of the soils of five European cities. Environ Pollut 152:73–81

    Article  CAS  Google Scholar 

  • Alekseenko V, Alekseenko A (2014) The abundances of chemical elements in urban soils. J Geochem Explor 147:245–249

    Article  CAS  Google Scholar 

  • Alker S, Joy V, Roberts P, Smith N (2000) The definition of brownfield. J Environ Plan Manage 43(1):49–69

    Article  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils. Blackie Academic and Professional, UK

    Book  Google Scholar 

  • Apte SC, Gardner MJ, Ravenscroft JE, Turrell JA (1990) Examination of the range of cooper complexing ligands in natural waters using a combination of cathodic stripping voltammetry and computer simulation. Anal ChimActa 235:287–287

    Article  CAS  Google Scholar 

  • Babula P, Adam V, Optrilova R, Zehnalek J, Havel L, Kizek R (2008) Uncommon heavy metals, metalloids and their plant toxicity: a review. Environ Chem Lett 6(4):189–213

    Article  CAS  Google Scholar 

  • Bao J, Wang L, Xiao M (2016) Changes in speciation and leaching behaviors of heavy metals in dredged sediment solidified/stabilized with various materials. Environ Sci Pollut Res 23(9):8294–8301

    Article  CAS  Google Scholar 

  • Belzile N, Chen YW, Wang ZJ (2001) Oxidation of antimony(III) by amorphous iron and manganese oxyhydroxides. Chem Geol 174:379–387

    Article  CAS  Google Scholar 

  • Bi XY, Liang SY, Li XD (2013) Trace metals in soil, dust, and tree leaves of the urban environment, Guangzhou, China. Chin Sci Bull 58:222–230

    Article  CAS  Google Scholar 

  • Bienert GP, Thorsen M, Schussler MD, Nilsson HR, Wagner A, Tamas MJ, Jahn TP (2008) A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biol 6:26

    Article  CAS  Google Scholar 

  • Bockheim J. G. (1974). Nature and properties of highly disturbed urban soils, Philadelphia, Pennsylvania. Paper presented before Div. S-5, Soil Science Society of America, Chicago, Illinois

  • BRPG (Baoji Regional Planning Group), (1991). Baoji Regional Plan 1991–2000, mimeo, p. 15

  • Brumelis G, Lapina L, Nikodemus O, Tabors G (2000) Use of an artificial model of monitoring data to aid interpretation of principal component analysis. Environ Modell Soft 15:755–763

    Article  Google Scholar 

  • Chen C, Lu Y, Hong J, Ye M, Wang Y, Lu H (2010) Metal and metalloid contaminant availability in Yundang Lagoon sediments, Xiamen Bay, China, after 20 years continuous rehabilitation. J Hazard Mater 175:1048–1055

    Article  CAS  Google Scholar 

  • Chiang KY, Wang WN, Wang MK, Chiang PN (2006) Lowmolecular weight organic acids and metal speciation in rhizosphere and bulk soils of a temperate rainforest in Chitou Taiwan. Taiwan J Sci 21:327–337

    CAS  Google Scholar 

  • Chien SH, Clayton WR (1980) Application of Elovich equation to the kinetics of phosphate release and sorption in soils. Soil Sci Am J 44:260–264

    Article  CAS  Google Scholar 

  • Christopher A, Václav T, Lubos B, Ondrej D (2016) Different low-molecular-mass organic acids specifically control leaching of arsenic and lead from contaminated soil. J Contam Hydrol 187:18–30

    Article  CAS  Google Scholar 

  • CNEMC (China National Environmental Monitoring Centre). The background values of Chinese soils, Environmental Science Press of China, Beijing, 1990

  • Da Silva LID, de Souza Sarkis JE, Zotin FMZ, Carneiro MC, Neto AA, da Silva ASAG, Cardoso MJB, Monteiro MIC (2008) Traffic and catalytic converterrelated atmospheric contamination in the metropolitan region of the city of Rio de Janeiro, Brazil. Chemosphere 71:677–684

    Article  CAS  Google Scholar 

  • De Kimpe CR, Morel JL (2000) Urban soil management: a growing concern. Soil Sci 165:31–40

    Article  Google Scholar 

  • Deng C, Ping X, Yang W, Huang H, Zhang L (2012) Selection of the background value for enrichment factor. Environ Chem 9:1362–1367

    Google Scholar 

  • Duffus JH (2002) Heavy metals—a meaningless term? Pure Appl Chem 74:793–807

    Article  CAS  Google Scholar 

  • Duzgoren-Aydin NS, Wong CSC, Aydin A, Song Z, You M, Li XD (2006) Heavy metal contamination and distribution in the urban environment of Guangzhou, SE China. Geochem Health 28:375–391

    Article  CAS  Google Scholar 

  • Einax JW, Zwanzinger HW, Geis S (1997) Chemometrics in environmental analysis. Wiley–VCH, Weinheim

    Book  Google Scholar 

  • Facchinelli A, Sacchi E, Mallen L (2001) Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. EnvironPollut 114:313–324

    CAS  Google Scholar 

  • Furrer G, Stumm W (1986) The coordination chemistry of weathering: I dissolution kinetics of delta-Al2O3 and BeO. Geochim Cosmochim Acta 50(9):1847–1860

    Article  CAS  Google Scholar 

  • Galušková I, Mihaljevič M, Borůvka L, Drábek O, Frühauf M, Němeček K (2014) Lead isotope composition and risk elements distribution in urban soils of historically different cities Ostrava and Prague, the Czech Republic. J Geochem Explor 147:215–221

    Article  CAS  Google Scholar 

  • Gibson MJ, Farmer JG (1986) Multi-step sequential chemical extraction of heavy metals from urban soils. Environ Pollut Ser B 11:117–135

    Article  CAS  Google Scholar 

  • Gonçalves M.A., Vairinho M., Oliveira V., (1998). Study of geochemical anomalies in Mombeja area using a multifractal methodology and geostatistics. In: Buccianti, A., Nardi, G., Potenza, R. (Eds.), Proceedings of the IV IAMG'98. Part 2, pp. 590–595

  • Goovaerts P (1999) Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89:1–45

    Article  Google Scholar 

  • Gosar M, Žibret G (2011) Mercury contents in the vertical profiles through alluvial sediments as a reflection of mining in Idrija (Slovenia). J Geochem Explor 110:81–91

    Article  CAS  Google Scholar 

  • Gu Z, Wu M, Li K, Ning P (2013) Variation of heavy metal speciation during the pyrolysis of sediment collected from Dianchi Lake, China. Arab J Chem. doi:10.1016/.arabjc.2013.07.053

  • Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001

    Article  Google Scholar 

  • Han Y, Cao J, Jin Z, An Z (2009) Elemental composition of aerosols in Daihai, a rural area in the front boundary of the summer Asian monsoon. Atmos Res 92:229–235

    Article  CAS  Google Scholar 

  • Hendershot WH, Lalande H, Duquette M (1993) Soil reaction and exchangeable acidity. In: Carter MR (ed) Soil sampling and methods of analysis for Canadian Society of Soil Science. Lewis, Boca Raton, FL

    Google Scholar 

  • Hooda PS (ed) (2010) Trace elements in soils. John Wiley & Sons, Chichester

    Google Scholar 

  • Imperato M, Adamo PD, Naimo AM, Stanzione D, Violante P (2003) Spatial distribution of heavy metals inurban soils of Naples City (Italy). Environ Pollut 124(2):247–256

    Article  CAS  Google Scholar 

  • Isaaks EH, Srivastava RM (eds) (1990) An introduction to applied geostatistics. Oxford University Press, USA

    Google Scholar 

  • Islam S, Ahmed K, Al-Mamun H, Masunaga S (2015) Potential ecological risk of hazardous elements in different land-use urban soils of Bangladesh. Sci Total Environ 512-513:94–102

    Article  CAS  Google Scholar 

  • Jesu’s GM, Lacal J, Da Silva P, Garcıa R, Teresa SM, Procopioa JR (2004) Study of metal fractionation in river sediments. A comparison between kinetic and sequential extraction procedures. Environ Pollut 127:175–182

    Article  CAS  Google Scholar 

  • Kelly J, Thornton I, Simpson PR (1996) Urban geochemistry: a study of the influence of anthropogenic activity on the heavy metal content of soils in traditionally industrial and non-industrial areas of Britain. Appl Geochem 11(1–2):363–370

    Article  CAS  Google Scholar 

  • Kowalkowski T, Zbytniewski R, Szpejna J, Buszewski B (2006) Application of chemometrics in river water classification. Water Res 40:744–752

    Article  CAS  Google Scholar 

  • Kunito T, Saeki K, Goto S, Hayashi H, Oyaizu H, Matsumoto S (2001) Copper and zinc fractions affecting microorganisms in long-term sludge-amended soils. Bioresour Technol 79:135–146

    Article  CAS  Google Scholar 

  • Kuo S, Mikkelsen DS (1980) Kinetics of zinc desorption from soils. Plant Soil 56:355–364

    Article  CAS  Google Scholar 

  • Li XP, Feng LN (2010) Spatial distribution of hazardous elements in urban topsoils surrounding Xi’an industrial areas, (NW, China): controlling factors and contamination assessments. J Hazard Mater 174:662–669

    Article  CAS  Google Scholar 

  • Li XP, Feng LN (2012) Multivariate and geostatistical analyzes of metals in urban soil of Weinan industrial areas, Northwest of China. Atmos Environ 47(1):58–65

    Article  CAS  Google Scholar 

  • Li XP, Huang CC (2007) Environment impact of heavy metals on urban soil in the vicinity of industrial area of Baoji City, P.R. China. Environ Geol 52:1631–1637

    Article  CAS  Google Scholar 

  • Li XP, Nan XJ, Hou K, Chen C (2012) Mobility of heavy metals and the leaching characteristics with ascorbic acid from urban soil in Tongchuan City. Arid Zone Res 29(5):878–882

    Google Scholar 

  • Li XY, Liu LJ, Wang YG, Luo GP, Chen X, Yang XL, Myrna Hall HP, Guo RC, Wang HJ, Cui JH, He XY (2013) Heavy metal contamination of urban soil in an old industrial city (Shenyang) in Northeast China. Geoderma 192:50–58

    Article  CAS  Google Scholar 

  • Li XP, Feng LN, Huang CC, Yan XY, Zhang X (2014a) Potential hazardous elements (PHEs) in atmospheric particulate matter (APM) in the south of Xi’an during the dust episodes of 2001–2012 (NW China): chemical fractionation, ecological and health risk assessment. Environ Earth Sci 71:4115–4126

    Article  CAS  Google Scholar 

  • Li XP, Xu CL, Zhang X, Liu XY, Liu J, Hou K, Wang JW, Yang R (2014b) Leaching characteristics and kinetic mechanism of heavy metal in urban soil. Bull Soil Water Conserv 34(6):6–10

    Google Scholar 

  • Li XP, Liu XY, Liu J, Xu CL, Yang R, Wang JW, Wang YF, Wang Y, Wang LN, Zhou Q (2015) Assessing exposure risk of lead in urban soil and dust to children in the Valley City. Asian J Ecotoxicol 10(2):418–427

    Google Scholar 

  • Libes SM (1992) An introduction to marine biogeochemistry. John Wiley and Sons, New York

    Google Scholar 

  • Linde M, Bengtsson H, Oborn I (2001) Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden. Water Air Soil Pollut Focus 1(3–4):83–101

    Article  CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci Soc Am J 42:421–428

    Article  CAS  Google Scholar 

  • Lintschinger J, Michalke B, Schulte-Hustede S, Schramel P (1998) Studies on speciation of antimony in soil contaminated by industrial activity. Int J Environ Anal Chem 72:11–25

    Article  CAS  Google Scholar 

  • Lu XW, Loretta LY, Wang LJ, Lei K, Huang J, Zhai YX (2009) Contamination assessment of mercury and arsenic in roadway dust from Baoji, China. Atmos Environ 43:2489–2496

    Article  CAS  Google Scholar 

  • Lu XW, Wang LJ, Li LY, Lei K, Huang L, Kang D (2010) Multivariate statistical analysis of heavy metals in street dust of Baoji, NW China. J Hazard Mater 173:744–749

    Article  CAS  Google Scholar 

  • Luo XS, Yu S, Zhu YG, Li HD (2012) Trace metal contamination in urban soils of China. Sci Total Environ 421-422:17–30

    Article  CAS  Google Scholar 

  • Madrid F, Romero AS, Madrid L, Maqueda C (2006) Reduction of availability of trace metals in urban soils using inorganic amendments. Environ Geochem Health 28:365–373

    Article  CAS  Google Scholar 

  • Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals inurban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300:229–243

    Article  CAS  Google Scholar 

  • Marinho Reis AP, Shepherd T, Nowell G, Cachada A, Duarte AC, Cave M, Wragg J, Patinha C, Dias A, Rocha F, da Silva EF, Sousa AJ, Prazeres C, Batista MJ (2016) Source and pathway analysis of lead and polycyclic aromatic hydrocarbons in Lisbon urban soils. Sci Total Environ 573(15):324–336

    Article  CAS  Google Scholar 

  • Marques JJ, Schulze DG, Curi N, Mertzman SA (2004) Trace element geochemistry in Brazilizan Cerrado soils. Geoderma 121:31–43

    Article  CAS  Google Scholar 

  • Merot P, Ezzahar B, Walter C, Aurousseau P (1995) Mapping waterlogging of soils using digital terrain models. Hydrol Process 9:27–34

    Article  Google Scholar 

  • Mihailović A, Budinski-Petković L, Popov S, Ninkov J, Vasin J, Ralević NM, Vučinić VM (2015) Spatial distribution of metals in urban soil of Novi Sad, Serbia: GIS based approach. J Geochem Explor 150:104–114

    Article  CAS  Google Scholar 

  • Mitsunobu S, Takahashi Y, Terada Y (2010) μ-XANES evidence for the reduction of Sb(V) to Sb(III) in soil from Sb mine tailing. Environ Sci Tech 44:1281–1287

    Article  CAS  Google Scholar 

  • Morel JL (1997) Bioavailability of trace elements to terrestrial plants. Soil Ecotoxicol 178:141–176

    Google Scholar 

  • Muller G (1969) Index of geoaccumulation in sediments of the Rhine River. GeoJournal 2:108–118

    Google Scholar 

  • Muniz P, Anulat E, Yannicelli B, Garcia-Alonso J, Medina G, Bicego MC (2004) Assessment of contamination by heavy metals and petroleum hydrocarbons in sediments of Montevideo Harbour (Uruguay). Environ Int 29:1019–1028

    Article  CAS  Google Scholar 

  • Nemr AE, Khaled A, Sikaily AE (2006) Distribution and statistical analysis of leachable and total heavy metals in the sediments of the Suez Gulf. Environ Monit Assess 118:89–112

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Ozan DY, Omar A, Gurdal T (2008) Multivariate statistics to investigate metal contamination in surface soil. J Environ Manag 86:581–594

    Article  Google Scholar 

  • Perin G., Craboledda L., Lúchese M., Cirillo R., Dotta L., Zanette M.L., Orio A.A., (1985). Heavy metal speciation in the sediments of Northern Adriatic Sea—a new approach for environmental toxicity determination. In: Lekkas, T.D. (Ed.), Heavy metal in the environment, pp 454–456

  • Preston J, Engel B, Lalor GC, Vutchkov MK (1996) The application of geographic information systems to geochemical studies in Jamaica. Environ Geochem Health 18:99–104

    Article  CAS  Google Scholar 

  • Purves D (1966) Contamination of urban garden soils with copper and boron. Nature 210:1077–1078

    Article  CAS  Google Scholar 

  • Purves D (1967) Contamination of urban garden soils with copper, boron and lead. Plant Soil 26:380–382

    Article  CAS  Google Scholar 

  • Purves D, Mackenzie EJ (1969) Trace element contamination of parklands in urban areas. J Soil Sci 20:288–290

    Article  CAS  Google Scholar 

  • Raab GA, Bartling MH, Stapanian MA, Cole WH, Tidwell RL, Cappo KA (1990) The homogenization of environmental soil samples in bulk. In: Simmons MS (ed) Hazardous waste measurements. Lewis Publishers, Chelsea, MI

    Google Scholar 

  • Ragosta M, Caggiano R, Macchiato M, Sabia S, Trippetta S (2008) Trace elements in daily collected aerosol: level characterization and source identification in a four-year study. Atmos Res 89:206–217

    Article  CAS  Google Scholar 

  • Rauret G, Lopez-Sanchez JF, Sahuquillo A, Rubio R, Davidson C, Ure A, Quevauviller P (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J Environ Monit 1:57–61

    Article  CAS  Google Scholar 

  • Ren R, Wang H, Lu T, Yin Z, Wang M, Wang X (2013) Study on the soil geochemical reference values and background values in Guanzhong Plain. J Northwest Univ(Nat Sci Ed) 43(5):742–748

    CAS  Google Scholar 

  • Richter P, Griño P, Ahumada I, Giordano A (2007) Total element concentration and chemical fractionation in airborne particulate matter from Santiago. Chile Atmos Environ 41:6729–6738

    Article  CAS  Google Scholar 

  • Rodriguez-Flores M, Rodriguez-Castellon E (1982) Lead and cadmium levels in soil and plants near highways and their correlation with traffic density. Environ Pollut ser B 4:281–290

    Article  CAS  Google Scholar 

  • SBB (Statistical Bureau of Baoji) (2008) Statistical yearbook of Baoji 2008. Statistical Press of China, Beijing (in Chinese)

    Google Scholar 

  • Schloeder CA, Zimmerman NE, Jacobs MJ (2001) Comparison of methods for interpolating soil properties using limited data. Soil Sci Soc Am J 65:470–479

    Article  CAS  Google Scholar 

  • Sezgin N, Ozcan HK, Demir G, Nemlioglu S, Bayat C (2003) Determination of heavy metal concentrations in street dusts in Istanbul E-5 highway. Environ Int 29:979–985

    Article  CAS  Google Scholar 

  • Shepard D (1968) A two-dimensional interpolation function for irregularly-spaced data. ACM New York, NY, USA

    Book  Google Scholar 

  • Shi G, Chen Z, Xu S, Zhang J, Wang L, Bi C, Teng J (2008) Potentially toxic metal contamination of urban soils and roadside dust in Shanghai, China. Environ Pollut 156:251–260

    Article  CAS  Google Scholar 

  • Shine JP, Ika RV, Ford TE (1995) Multivariate statistical examination of spatial and temporal patterns of heavy-metal contamination in New-Bedford Harbor marine-sediments. Environ Sci Technol 29:1781–1788

    Article  CAS  Google Scholar 

  • Shotyk W, Krachler M, Chen B (2005) Antimony: global environmental contaminant. J Environ Monit 7:1135–1136

    Article  CAS  Google Scholar 

  • Sloof W, Bont PFH, Hesse JM, Loos B. Exploratory report—antimony and antimony compound. The Netherlands: National Institute of Public Health and Environmental Protection: Bilthoven; 1992.

  • Sparks DL (2003) Environmental soil chemistry, 2nd edn. Academic Press, New York

    Google Scholar 

  • Tam NFY, Yao MWY (1998) Normalisation and heavy metal contamination in mangrove sediments. Sci Total Environ 216:33–39

    Article  CAS  Google Scholar 

  • Texas A&M University. Department of Soil & Crop Science, (2015). The challenges of arsenic in agriculture & the environment. Viewed online 03.03.15: http://arsenic.tamu.edu/index.htm.

  • Tiller KG (1992) Urban soil contamination in Australia. Aust J Soil Res 30:937–957

    Article  CAS  Google Scholar 

  • Warren HV, Delavault RE, Fletcher KW (1971) Metal pollution—a growing problem in industrial and urban areas. Can Min Metall Bull 64:34–45

    CAS  Google Scholar 

  • Wei BG, Yang LS (2010) A review of heavy metal contaminations in urban soils, urban road dusts and agricultural soils from China. Microchem J 94:99–107

    Article  CAS  Google Scholar 

  • Wysocki R, Chery CC, Wawrzycka D, Van Hulle M, Cornelis R, Thevelein JM, Tamas MJ (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40:1391–1401

    Article  CAS  Google Scholar 

  • Xiao S, Wang QY, Cao JJ, Huang RJ, Chen WD, Han YM, Xu HM, Liu SX, Zhou YQ, Wang P, Zhang JQ, Zhan CL (2014) Long-term trends in visibility and impacts of aerosol composition on visibility impairment in Baoji, China. Atmos Res 149:88–95

    Article  CAS  Google Scholar 

  • Xie MJ, Wang GH, Hu SY, Han QY, Xu YJ, Gao ZC (2009) Aliphatic alkanes and polycyclic aromatic hydrocarbons in atmospheric PM10 aerosols from Baoji, China: implications for coal burning. AtmosRes 93:840–848

    CAS  Google Scholar 

  • Yang Z, Lu W, Xin X, Liu X, Yang Q (2011) Chemical morphological features of Pb, Cu, Zn, Cd and Cr in urban soil of Changchun City, China. Chin J Soil Sci 42(5):1247–1255

    CAS  Google Scholar 

  • Yang J, Chen L, Liu LZ, Shi WL, Meng XZ (2014) Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai. Ecotoxicol Environ Saf 102:129–135

    Article  CAS  Google Scholar 

  • Zacháry D, Jordan G, Völgyesi P, Bartha A, Szabó C (2015) Urban geochemical mapping for spatial risk assessment of multisource potentially toxic elements—a case study in the city of Ajka, Hungary. J Geochem Explor 158:186–200

    Article  CAS  Google Scholar 

  • Zhang J, Liu CL (2002) Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuar Coast Shelf Sci 54:1051–1070

    Article  CAS  Google Scholar 

  • Zhao S, Feng C, Yang Y, Niu J, Shen Z (2012) Risk assessment of sedimentary metals in the Yangtze Estuary: new evidence of the relationships between two typical index methods. J Hazard Mater 241-242:164–172

    Article  CAS  Google Scholar 

  • Žibret G (2008) Determination of historical emission of heavy metals into the atmosphere: Celje case study. Environ Geol 56:189–196

    Article  CAS  Google Scholar 

  • Žibret G (2012) Impact of dust filter installation in ironworks and construction on brownfield area on the toxic metal concentration in street and house dust (Celje, Slovenia). Ambio 41:292–301

    Article  CAS  Google Scholar 

  • Žibret G, Rokavec D (2010) Household dust and street sediment as an indicator of recent heavy metals in atmospheric emissions: a case study on a previously heavily contaminated area. Environmental Earth Sci 61:443–453

    Article  CAS  Google Scholar 

  • Žibret G, Van Tonder D, Žibret L (2013) Metal content in street dust as a reflection of atmospheric dust emissions from coal power plants, metal smelters, and traffic. Environ Sci Pollut Res Int 20:4455–4468

    Article  CAS  Google Scholar 

  • Zoller WH, Gladney ES, Duce RAM (1974) Atmospheric concentrations and sources of trace metals at the South Pole. Science 183:198–200

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support of the National Natural Science Foundation of China (41471420), the Natural Science Foundation of Shaanxi Province (2015JM4124), and Fundamental Research Funds for the Central Universities (GK201701010, GK 200902024, and GK201402032).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Li.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Wu, T., Bao, H. et al. Potential toxic trace element (PTE) contamination in Baoji urban soil (NW China): spatial distribution, mobility behavior, and health risk. Environ Sci Pollut Res 24, 19749–19766 (2017). https://doi.org/10.1007/s11356-017-9526-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9526-z

Keywords

Navigation