Skip to main content
Log in

The principle and effect of transfer agent for the removal of PCE during in situ chemical oxidation

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Viscosity remedial technology, which uses a water-soluble polymer mixed with remedial fluids, has been introduced in recent years to improve the removal efficacy of perchloroethylene/tetrachloroethylene (PCE) by improving oxidant coverage (i.e. sweep efficiency). Xanthan gum and hydrolysed polyacrylamide (HPAM) are relatively stable with time and temperature and possess salt and oxidation resistance, indicating that they may be good flooding agents (the former is better than the latter in this work). In this work, we quantified the polymer directly improved oxidation of PCE during transport by using a two-dimensional flow tank. Using a low pore volume (≤3.0), the removal rate of the PCE increased with the polymer concentration before stabilizing at approximately 93.00 and 88.30% for xanthan and HPAM, respectively. In this work, over 80% of PCE was removed via less than 3.0 PV of the SDS solution, whereas complete removal (100%) was achieved with less than 3.0 PV of SDS foam. Furthermore, the new experimental discoveries demonstrate that xanthan is better than HPAM and SDS foam is a better remediation agent than the SDS solution for removing PCE.

(Reaction device, A - inlet device (pump 1#), B - 2D tank, C - outflow device (pump 2#), D - data recording and processing device, E - microscopic expression, E (a) - KMnO4 flushing, E (b) - polymer solution flushing).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Chen HX, Tang HM, Gong XP, Wang JJ, Liu YG, Duan M, Zhao F (2015) Effect of partially hydrolyzed polyacrylamide on emulsification stability of wastewater produced from polymer flooding. J Pet Sci Eng 133:431–439

    Article  CAS  Google Scholar 

  • Cherry JA, Feenstra S, Mackay DM (1992) Developing a conceptual framework and rational goals for groundwater remediation at DNAPL sites. Proceedings of the Subsurface Restoration Conference, Dallas, TX

  • Chokejaroenrat C, Kananizadeh N, Sakulthaew C, Comfort S, Li Y (2013) Improving the sweeping efficiency of permanganate into low permeable zones to treat TCE: experimental results and model development. Environ Sci Technol 47(22):13031–13038

    Article  CAS  Google Scholar 

  • Darwish MI, McCray JE, Currie PK, Zitha PL (2003) Polymer-enhanced DNAPL flushing from low-permeability media: an experimental study. Groundwater Monit Remediation 23(2):92–101

    Article  CAS  Google Scholar 

  • Dwarakanath V, Kostarelos K, Pope GA, Shotts D, Wade WH (1999) Anionic surfactant remediation of soil columns contaminated by nonaqueous phase liquids. J Contam Hydrol 38(4):465–488

    Article  CAS  Google Scholar 

  • Furrer G, Stumm W (1986) The coordination chemistry of weathering: I. Dissolution kinetics of δ-Al 2O3 and BeO. Geochim Cosmochim Acta 50(9):1847–1860

    Article  CAS  Google Scholar 

  • Gao CH (2011) Scientific research and field applications of polymer flooding in heavy oil recovery. J Pet Explor Prod Technol 1(2–4):65–70

    Article  Google Scholar 

  • Garcıa-Ochoa F, Santos VE, Casas JA, Gomez E (2000) Xanthan gum: production, recovery, and properties. Biotechnol Adv 18(7):549–579

    Article  Google Scholar 

  • Gupta DK, Mohanty KK (2001) A laboratory study of surfactant flushing of DNAPL in the presence of macroemulsion. Environ Sci Technol 35(13):2836–2843

    Article  CAS  Google Scholar 

  • Higiro J, Herald TJ, Alavi S (2006) Rheological study of xanthan and locust bean gum interaction in dilute solution. Food Res Int 39(2):165–175

    Article  CAS  Google Scholar 

  • Hofstee C, Walker RC, Dane JH (1998) Infiltration and redistribution of perchloroethylene in stratified water-saturated porous media. Soil Sci Soc Am J 62:15–23

    Article  Google Scholar 

  • Hood ED, Thomson NR, Grossi D, Farquhar GJ (2000) Experimental determination of the kinetic rate law for the oxidation of perchloroethylene by potassium permanganate. Chemosphere 40(12):1383–1388

    Article  CAS  Google Scholar 

  • Huang KC, Hoag GE, Chheda P, Woody BA, Dobbs GM (2001) Oxidation of chlorinated ethenes by potassium permanganate: a kinetics study. J Hazard Mater 87(1):155–169

    Article  CAS  Google Scholar 

  • Jansson PE, Kenne L, Lindberg B (1975) Structure of the extracellular polysaccharide from Xanthomonas campestris. Carbohydr Res 45(1):275–282

    Article  CAS  Google Scholar 

  • Jeanes A, Pittsley JE, Senti FR (1961) Polysaccharide B-1459: a new hydrocolloid polyelectrolyte produced from glucose by bacterial fermentation. J Appl Polym Sci 5(17):519–526

    Article  CAS  Google Scholar 

  • Johansen RT (1979) Overview of selected oil recovery processes. J Rheol 23:167–179

    Article  CAS  Google Scholar 

  • Kananizadeh N, Chokejaroenrat C, Li Y, Comfort S (2015) Modeling improved ISCO treatment of low permeable zones via viscosity modification: assessment of system variables. J Contam Hydrol 173:25–37

    Article  CAS  Google Scholar 

  • Krembs FJ, Siegrist RL, Crimi ML, Furrer RF, Petri BG (2010) ISCO for groundwater remediation: analysis of field applications and performance. Groundwater Monit Remediation 30(4):42–53

    Article  Google Scholar 

  • Lee ES, Schwartz FW (2007) Characteristics and applications of controlled–release KMnO4 for groundwater remediation. Chemosphere 66(11):2058–2066

    Article  CAS  Google Scholar 

  • Lee ES, Seol Y, Fang YC, Schwartz FW (2003) Destruction efficiencies and dynamics of reaction fronts associated with the permanganate oxidation of trichloroethylene. Environ Sci Technol 37(11):2540–2546

    Article  CAS  Google Scholar 

  • Lee S, Lee G, Kam SI (2014) Three-phase fractional flow analysis for foam-assisted non-aqueous phase liquid (NAPL) remediation. Transp Porous Media 101(3):373–400

    Article  CAS  Google Scholar 

  • Li XD, Schwartz FW (2004) DNAPL remediation with in situ chemical oxidation using potassium permanganate: part I. Mineralogy of Mn oxide and its dissolution in organic acids. J Contam Hydrol 68(1):39–53

    Article  CAS  Google Scholar 

  • Liu W, Norisuye T (1988) Order–disorder conformation change of xanthan in 0.01 M aqueous sodium-chloride—dimensional behavior. Biopolymers 27(10):1641–1654

    Article  CAS  Google Scholar 

  • Liu H, Bruton TA, Doyle FM, Sedlak DL (2014) In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe (III)-and Mn (IV)-containing oxides and aquifer materials. Environ Sci Technol 48(17):10330–10336

    Article  CAS  Google Scholar 

  • Longino BL, Kueper BH (1999) Effects of capillary pressure and use of polymer solutions on dense, non-aqueous-phase liquid retention and mobilization in a rough-walled fracture. Environ Sci Technol 33(14):2447–2455

    Article  CAS  Google Scholar 

  • Lopez X, Valvatne PH, Blunt MJ (2003) Predictive network modeling of single phase non-Newtonian flow in porous media. J Colloid Interface Sci 264:256–265

    Article  CAS  Google Scholar 

  • Lund T, Lecourtier J, Muller G (1990) Properties of xanthan solutions after long-term heat treatment at 90 ° C. Polym Degrad Stab 27(2):211–225

    Article  CAS  Google Scholar 

  • Mahmoodlu MG, Hassanizadeh SM, Hartog N (2014) Evaluation of the kinetic oxidation of aqueous volatile organic compounds by permanganate. Sci Total Environ 485:755–763

    Article  Google Scholar 

  • McCray JE, Munakata-Marr J, Silva JAK, Davenport S, Smith MM (2010) Multi-scale experiments to evaluate mobility control methods for enhancing the sweep efficiency of injected subsurface. Department of Defense Strategic Environmental Research and Development Program (SERDP) project. No. ER-1486

  • Milas M, Rinaudo M, Tinland B (1985) The viscosity dependence on concentration, molecular weight and shear rate of xanthan solutions. Polym Bull 14(2):157–164

    Article  CAS  Google Scholar 

  • Mundle K, Reynolds DA, West MR, Kueper BH (2007) Concentration rebound following in situ chemical oxidation in fractured clay. Ground Water 45:692–702

    Article  CAS  Google Scholar 

  • Pankow JF, Cherry JA (1996) Dense chlorinated solvents and other DNAPLS in groundwater: history, behaviour, and remediation. Waterloo Press, Portland

    Google Scholar 

  • Poulson SR, Naraoka H (2002) Carbon isotope fractionation during permanganate oxidation of chlorinated ethylenes (cDCE, TCE, PCE). Environ Sci Technol 36(15):3270–3274

    Article  CAS  Google Scholar 

  • Richardson RK, Ross-Murphy SB (1987) Non-linear viscoelasticity of polysaccharide solutions. 2: xanthan polysaccharide solutions. Int J Biol Macromol 9(5):250–256

    Article  CAS  Google Scholar 

  • Robert T, Martel R, Conrad SH, Lefebvre R, Gabriel U (2006) Visualization of TCE recovery mechanisms using surfactant–polymer solutions in a two-dimensional heterogeneous sand model. J Contam Hydrol 86(1):3–31

    Article  CAS  Google Scholar 

  • Schroth MH, Oostrum M, Wietsma TW, Istok JD (2001) In-situ oxidation of trichloroethene by permanganate: effects on porous medium hydraulic properties. J Contam Hydrol 50:79–98

    Article  CAS  Google Scholar 

  • Siegrist RL, Crimi M, Simpkin TJ, Brown RA, Unger M (2011) In situ chemical oxidation for groundwater remediation. Springer Publishing, New York

    Book  Google Scholar 

  • Silva JAK, Smith MM, Munakata-Marr J, McCray JE (2012) The effect of system variables on in situ sweep-efficiency improvements via viscosity modification. J Contam Hydrol 136–137:117–130

    Article  Google Scholar 

  • Silva JAK, Liberatore M, McCray JE (2013) Characterization of bulk fluid and transport properties for simulating polymer improved aquifer remediation. J Environ Eng 139:149–159

    Article  CAS  Google Scholar 

  • Smith IH, Pace GW (1982) Recovery of microbial polysaccharides. J Chem Technol Biotechnol 32(1):119–129

    Article  CAS  Google Scholar 

  • Smith MM, Silva JAK, Munakata-Marr J, McCray JE (2008) Compatibility of polymers and chemical oxidants for enhanced groundwater remediation. Environ Sci Technol 42:9296–9301

    Article  CAS  Google Scholar 

  • Stroo HF, Leeson A, Marqusee JA, Johnson PC, Ward CH, Kavanaugh MC, Sale TC, Newell CJ, Pennell KD, Lebrón CA, Unger M (2012) Chlorinated ethene source remediation: lessons learned. Environ Sci Technol 46(12):6438–6447

    Article  CAS  Google Scholar 

  • Tick GR, Rincon EA (2009) Effect of enhanced-solubilization agents on dissolution and mass flux from uniformly distributed immiscible liquid trichloroethene (TCE) in homogeneous porous media. Water Air Soil Pollut 204(1–4):315–332

    Article  CAS  Google Scholar 

  • Tick GR, Harvell JR, Murgulet D (2015) Intermediate-scale investigation of enhanced-Solubilization agents on the dissolution and removal of a multicomponent dense nonaqueous phase liquid (DNAPL) source. Water air Soil Pollut 226(11):1–21

    Article  CAS  Google Scholar 

  • Truex MJ, Vermeul VR, Mendoza DP, Fritz BG, Mackley RD, Oostrom M, Wietsma TW, Macbeth TW (2011) Injection of zero valent iron into an unconfined aquifer using shear thinning fluids. Ground Water Monit Rem 31:50–58

    Article  CAS  Google Scholar 

  • Vecchia ED, Luna M, Sethi R (2009) Transport in porous media of highly concentrated iron micro-and nanoparticles in the presence of xanthan gum. Environ Sci Technol 43(23):8942–8947

    Article  Google Scholar 

  • Wang F, Sun Z, Wang YJ (2001) Study of xanthan gum/waxy corn starch interaction in solution by viscometry. Food Hydrocoll 15(4):575–581

    Article  CAS  Google Scholar 

  • Wang F, Wang YJ, Sun Z (2002) Conformational role of xanthan gum in its interaction with guar gum. Food Chem Toxicol 67(9):3289–3294

    CAS  Google Scholar 

  • Watts RJ, Teel AL (2006) Treatment of contaminated soils and grounwater using ISCO. Pract Period Hazard Toxic Radioact Waste Manage 10:2–9

    Article  CAS  Google Scholar 

  • Watts RJ, Udell MD, Rauch PA (1990) Treatment of pentachlorophenol contaminated soils using Fenton’s reagent. Hazard Waste Hazard 7:335–345

    Article  CAS  Google Scholar 

  • Wyatt NB, Liberatore MW (2009) Rheology and viscosity scaling of the polyelectrolyte xanthan gum. J Appl Polym Sci 114(6):4076–4084

    Article  CAS  Google Scholar 

  • Yan YE, Schwartz FW (1999) Oxidative degradation and kinetics of chlorinated ethylenes by potassium permanganate. J Contam Hydrol 37:343–365

    Article  CAS  Google Scholar 

  • Yan YE, Schwartz FW (2000) Kinetics and mechanism for TCE oxidation by permanganate. Environ Sci Technol 34(12):2535–2541

    Article  CAS  Google Scholar 

  • Zhong L, Szecsody J, Oostrom M, Truex M, Shen X, Li X (2011) Enhanced remedial amendment delivery to subsurface using shear thinning fluid and aqueous foam. J Hazard Mater 191(1):249–257

    Article  CAS  Google Scholar 

  • Zhong L, Oostrom M, Truex MJ, Vermeul VR, Szecsody JE (2013) Rheological behavior of xanthan gum solution related to shear thinning fluid delivery for subsurface remediation. J Hazard Mater 244–245:160–170

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 41572219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiajun Chen.

Additional information

Responsible editor: Bingcai Pan

Highlights

1. Xanthan gum has better tolerance for monovalent salts (e.g. Na+, K+), oxidants and groundwater (GW) than hydrolysed polyacrylamide (HPAM).

2. Using Xanthan as a transfer agent improved the removal rate of PCE via the theory of increasing sweep efficiency.

3. We believe this work to be pioneering research on the removal rate of PCE using HPAM and sodium dodecyl sulphate (SDS) foam and the comparison of polymer and SDS solutions and SDS foam removal of PCE.

4. The SDS foam surface active agent is a promising option for removing PCE, and the effect is even better than that of the corresponding SDS solution.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Chen, J., Wang, Q. et al. The principle and effect of transfer agent for the removal of PCE during in situ chemical oxidation. Environ Sci Pollut Res 24, 21011–21023 (2017). https://doi.org/10.1007/s11356-017-9411-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9411-9

Keywords

Navigation