Skip to main content

Advertisement

Log in

Copper bioaccumulation, photosystem II functioning, and oxidative stress in the seagrass Cymodocea nodosa exposed to copper oxide nanoparticles

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Photosynthetic activity, oxidative stress, and Cu bioaccumulation in the seagrass Cymodocea nodosa were assessed 4, 12, 24, 48, and 72 h after exposure to two copper oxide nanoparticle (CuO NP) concentrations (5 and 10 mg L−1). CuO NPs were characterized by scanning electron microscopy (SEM) and dynamic light scattering measurements (DLS). Chlorophyll fluorescence analysis was applied to detect photosystem II (PSII) functionality, while the Cu accumulation kinetics into the leaf blades was fitted to the Michaelis-Menten equation. The uptake kinetics was rapid during the first 4 h of exposure and reached an equilibrium state after 10 h exposure to 10 mg L−1 and after 27 h to 5 mg L−1 CuO NPs. As a result, 4-h treatment with 5 mg L−1 CuO NPs, decreased the quantum yield of PS II photochemistry (Φ PSΙΙ ) with a parallel increase in the regulated non-photochemical energy loss in PSII (Φ NPQ ). However, the photoprotective dissipation of excess absorbed light energy as heat, through the process of non-photochemical quenching (NPQ), did not maintain the same fraction of open reaction centers (q p ) as in control plants. This reduced number of open reaction centers resulted in a significant increase of H2O2 production in the leaf veins serving possibly as an antioxidant defense signal. Twenty-four-hour treatment had no significant effect on Φ PSΙΙ and q p compared to controls. However, 24 h exposure to 5 mg L−1 CuO NPs increased the quantum yield of non-regulated energy loss in PSII (Φ NO ), and thus the formation of singlet oxygen (1O2) via the triplet state of chlorophyll, possible because the uptake kinetics had not yet reached the equilibrium state as did 10 mg L−1. Longer-duration treatment (48 and 72 h) had less effect on the allocation of absorbed light energy at PSII and the fraction of open reaction centers, compared to 4-h treatment, suggesting the function of a stress defense mechanism. The response of C. nodosa leaves to CuO NPs fits the “Threshold for Tolerance Model” with a threshold time (more than 4 h) required for induction of a stress defense mechanism, through H2O2 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Agathokleous E, Mouzaki-Paxinou AC, Saitanis CJ, Paoletti E, Manning WJ (2016) The first toxicological study of the antiozonant and research tool ethylene diurea (EDU) using a Lemna minor L. bioassay: hints to its mode of action. Environ Pollut 213:996–1006

    Article  CAS  Google Scholar 

  • Agostini S, Pergent G, Marchand B (2003) Growth and primary production of Cymodocea nodosa in a coastal lagoon. Aquat Bot 76:185–193

    Article  Google Scholar 

  • Anjum NA, Adam V, Kizek R, Duarte AC, Pereira E, Iqbal M, Lukatkin AS, Ahmad I (2015) Nano scale copper in the soil-plant system—toxicity and underlying potential mechanisms. Environ Res 138:306–325

    Article  CAS  Google Scholar 

  • Baker NR (2008) Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annu Rev Plant Biol 59:89–113

    Article  CAS  Google Scholar 

  • Barbagallo RP, Oxborough K, Pallett KE, Baker NR (2003) Rapid, noninvasive screening for perturbations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132:485–493

    Article  CAS  Google Scholar 

  • Barceló J, Poschenrieder C (2002) Fast root growth responses, root exudates, and internal detoxification as clues to the mechanisms of aluminum toxicity and resistance: a review. Env Exp Bot 48:75–92

    Article  Google Scholar 

  • Bayçu G, Gevrek-Kürüm N, Moustaka J, Csatári I, Rognes SE, Moustakas M (2017) Cadmium-zinc accumulation and photosystem II responses of Noccaea caerulescens to Cd and Zn exposure. Environ Sci Pollut Res 24:2840–2850

    Article  Google Scholar 

  • Blinova I, Ivask A, Heinlaan M, Mortimer M, Kahru A (2009) Ecotoxicity of nanoparticles of CuO and ZnO in natural water. Environ Pollut 158:41–47

    Article  Google Scholar 

  • Bresson J, Vasseur F, Dauzat M, Koch G, Granier C, Vile D (2015) Quantifying spatial heterogeneity of chlorophyll fluorescence during plant growth and in response to water stress. Plant Methods 11:23

    Article  Google Scholar 

  • Calatayud A, Roca D, Martínez PF (2006) Spatial–temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiol Biochem 44:564–573

    Article  CAS  Google Scholar 

  • Cancemi G, Buia MC, Mazzella L (2002) Structure and growth dynamics of Cymodocea nodosa meadows. Sci Mar 66:365–373

    Article  Google Scholar 

  • Chen JW, Kuang SB, Long GQ, Yang SC, Meng ZG, Li LG, Chen ZJ, Zhang GH (2016) Photosynthesis, light energy partitioning, and photoprotection in the shade-demanding species Panax notoginseng under high and low level of growth irradiance. Funct Plant Biol 43:479–491

    Article  CAS  Google Scholar 

  • Costa S, Crespo D, Henriques BMG, Pereira E, Duarte AC, Pardal MA (2011) Kinetics of mercury accumulation and its effects on Ulva lactuca growth rate at two salinities and exposure conditions. Water Air Soil Poll 217:689–699

    Article  CAS  Google Scholar 

  • Da Costa MVJ, Sharma PK (2016) Effect of copper oxide nanoparticles on growth, morphology, photosynthesis, and antioxidant response in Oryza sativa. Photosynthetica 54:110–119

    Article  CAS  Google Scholar 

  • Diaz S, Villares R, Carballeira A (2012) Uptake kinetics of As, Hg, Sb, and Se in the aquatic moss Fontinalis antipyretica Hedw. Water Air Soil Poll 223:3409–3423

    Article  CAS  Google Scholar 

  • Dietz KJ, Pfannschmidt T (2011) Novel regulators in photosynthetic redox control of plant metabolism and gene expression. Plant Physiol 155:1477–1485

    Article  CAS  Google Scholar 

  • Dinesh R, Anandaraj M, Srinivasan V, Hamza S (2012) Engineered nanoparticles in the soil and their potential implications to microbial activity. Geoderma 173–174:19–27

    Article  Google Scholar 

  • Falco WF, Queiroz AM, Fernandes J, Botero ER, Falcão EA, Guimarães FEG, M’Peko JC, Oliveira SL, Colbeck I, Caires ARL (2015) Interaction between chlorophyll and silver nanoparticles: a close analysis of chlorophyll fluorescence quenching. J Photochem Photobiol A 299:203–209

    Article  CAS  Google Scholar 

  • Fernández JA, Vázquez MD, López J, Carvalleira A (2006) Modeling the extra and intracellular uptake and discharge of heavy metals in Fontinalis antipyretica transplanted along a heavy metal and pH contamination gradient. Environ Pollut 139:21–31

    Article  Google Scholar 

  • Foyer CH, Shigeoka S (2011) Understanding oxidative stress and antioxidant functions to enhance photosynthesis. Plant Physiol 155:93–100

    Article  CAS  Google Scholar 

  • Frankart C, Eullaffroy P, Vernet G (2002) Photosynthetic responses of Lemna minor exposed to xenobiotics, copper, and their combinations. Ecotoxicol Environ Saf 53:439–445

    Article  CAS  Google Scholar 

  • Fryer MJ, Oxborough K, Mallineaux PM, Baker NR (2002) Imaging of photo-oxidative stress response in leaves. J Exp Bot 53:1249–1254

    CAS  Google Scholar 

  • Gomes T, Pinheiro JP, Cancio I, Pereira CG, Cardoso C, Bebianno MJ (2011) Effects of copper nanoparticles exposure in the mussel Mytilus galloprovincialis. Environ Sci Technol 45:9356–9362

    Article  CAS  Google Scholar 

  • Gomes T, Pereira CG, Cardoso C, Pinheiro JP, Cancio I, Bebianno MJ (2012) Accumulation and toxicity of copper oxide nanoparticles in the digestive gland of Mytilus galloprovincialis. Aquat Toxicol 118–119:72–79

    Article  Google Scholar 

  • Hazeem LJ, Bououdina M, Rashdan S, Brunet L, Slomianny C, Boukherroub R (2016) Cumulative effect of zinc oxide and titanium oxide nanoparticles on growth and chlorophyll a content of Picochlorum sp. Environ Sci Pollut Res 23:2821–2830

    Article  CAS  Google Scholar 

  • Heinlaan M, Kahru A, Kasemets K, Arbeille B, Prensier G, Dubourguier HC (2011) Changes in Daphnia magna midgut upon ingestion of copper oxide nanoparticles: a transmission electron microscopy study. Water Res 45:179–190

    Article  CAS  Google Scholar 

  • Hong J, Rico C, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, Gardea-Torresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impacts 17:177–185

    Article  CAS  Google Scholar 

  • Hristozov D, Malsch I (2009) Hazards and risks of engineered nanoparticles for the environment and human health. Sustainability 1:1161–1194

    Article  CAS  Google Scholar 

  • Kim C, Meskauskiene R, Apel K, Laloi C (2008) No single way to understand singlet oxygen signaling in plants. EMBO Rep 9:435–439

    Article  CAS  Google Scholar 

  • Kramer DM, Johnson G, Kiirats O, Edwards GE (2004) New fluorescence parameters for the determination of QA redox state and excitation energy fluxes. Photosynth Res 79:209–218

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Lambrev PH, Miloslavina Y, Jahns P, Holzwarth AR (2012) On the relationship between non-photochemical quenching and photoprotection of photosystem II. Biochim Biophys Acta 1817:760–769

    Article  CAS  Google Scholar 

  • Malea P, Zikidou C (2011) Temporal variation in biomass partitioning of the seagrass Cymodocea nodosa at the Gulf of Thessaloniki, Greece. J Biol Res - Thessaloniki 15:75–90

    Google Scholar 

  • Malea P, Adamakis IDS, Kevrekidis T (2013a) Microtubule integrity and cell viability under metal (Cu, Ni, Cr) stress in the seagrass Cymodocea nodosa. Chemosphere 93:1035–1042

    Article  CAS  Google Scholar 

  • Malea P, Adamakis IDS, Kevrekidis T (2013b) Kinetics of cadmium accumulation and its effects on microtubule integrity and cell viability in the seagrass Cymodocea nodosa. Aquat Toxicol 144–145:257–264

    Article  Google Scholar 

  • Malea P, Kevrekidis T, Potouroglou M (2013c) Seasonal variation of trace metal (Mn, Zn, Cu, Pb, Co, Cd) concentrations in compartments of the seagrass Cymodocea nodosa. Bot Mar 56:169–184

    Article  CAS  Google Scholar 

  • Malea P, Kevrekidis T, Mogias A, Adamakis IDS (2014) Kinetics of cadmium accumulation and occurrence of dead cells in leaves of the submerged angiosperm Ruppia maritime. Bot Mar 57:111–122

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic Press, London

    Google Scholar 

  • Maynard A, Aitken RJ, Butz T, Colvin V, Donaldson K, Oberdörster G, Philbert MA, Ryan J, Seaton A, Stone V, Tinkle SS, Tran L, Walker NJ, Warheit DB (2006) Safe handling of nanotechnology. Nature 444:267–269

    Article  CAS  Google Scholar 

  • Melegari SP, Perreault F, Costa RHR, Popovic R, Matias WG (2013) Evaluation of toxicity and oxidative stress induced by copper oxide nanoparticles in the green alga Chlamydomonas reinhardtii. Aquat Toxicol 142–143:431–440

    Article  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller G, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16:300–309

    Article  CAS  Google Scholar 

  • Moustaka J, Moustakas M (2014) Photoprotective mechanism of the non-target organism Arabidopsis thaliana to paraquat exposure. Pest Biochem Physiol 111:1–6

  • Moustaka J, Tanou G, Adamakis ID, Eleftheriou EP, Moustakas M (2015) Leaf age dependent photoprotective and antioxidative mechanisms to paraquat-induced oxidative stress in Arabidopsis thaliana. Int J Mol Sci 16:13989–14006

    Article  CAS  Google Scholar 

  • Moustaka J, Ouzounidou G, Bayçu G, Moustakas M (2016) Aluminum resistance in wheat involves maintenance of leaf Ca2+ and Mg2+ content, decreased lipid peroxidation and Al accumulation, and low photosystem II excitation pressure. Biometals 29:611–623

    Article  CAS  Google Scholar 

  • Moustakas M, Ouzounidou G (1994) Increased non-photochemical quenching in leaves of aluminium-stressed wheat plants is due to Al3+-induced elemental loss. Plant Physiol Biochem 32:527–532

    CAS  Google Scholar 

  • Moustakas M, Malea P, Zafeirakoglou A, Sperdouli I (2016) Photochemical changes and oxidative damage in the aquatic macrophyte Cymodocea nodosa exposed to paraquat-induced oxidative stress. Pest Biochem Physiol 126:28–34

    Article  CAS  Google Scholar 

  • Müller P, Li XP, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  Google Scholar 

  • Nair PMG, Chung IM (2014) Impact of copper oxide nanoparticles exposure on Arabidopsis thaliana growth, root system development, root lignificaion, and molecular level changes. Environ Sci Pollut Res 21:12709–12722

    Article  CAS  Google Scholar 

  • Ouzounidou G, Moustakas M, Lannoye R (1995) Chlorophyll fluorescence and photoacoustic characteristics in relationship to changes in chlorophyll and Ca2+ content of a Cu-tolerant Silene compacta ecotype under Cu treatment. Physiol Plantarum 93:551–557

    Article  CAS  Google Scholar 

  • Ouzounidou G, Moustakas M, Strasser RJ (1997) Sites of action of copper in the photosynthetic apparatus of maize leaves: kinetic analysis of chlorophyll fluorescence, oxygen evolution, absorption changes and thermal dissipation as monitored by photoacoustic signals. Aust J Plant Physiol 24:81–90

    Article  CAS  Google Scholar 

  • Perreault F, Oukarroum A, Pirastru L, Sirois L, Matias WG, Popovic R (2010) Evaluation of copper oxide nanoparticles toxicity using chlorophyll a fluorescence imaging in Lemna gibba. J Bot article ID 763142. doi:10.1155/2010/763142

  • Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R (2012) Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 87:1388–1394

    Article  CAS  Google Scholar 

  • Perreault F, Samadani M, Dewez D (2014) Effects of soluble copper released from copper oxide nanoparticles solubilisation on growth and photosynthetic process of Lemna gibba L. Nanotoxicology 8:374–382

    Article  CAS  Google Scholar 

  • Petrov VD, Van Breusegem F (2012) Hydrogen peroxide—a central hub for information flow in plant cells. AoB Plants pls014

  • Regier N, Cosio C, Von Moos N, Slaveykova VI (2015) Effects of copper-oxide nanoparticles, dissolved copper and ultraviolet radiation on copper bioccumulation, photosynthesis and oxidative stress in the aquatic macrophyte Elodea nuttattii. Chemosphere 128:56–61

    Article  CAS  Google Scholar 

  • Saison C, Perreault F, Daigle JC, Fortin C, Claverie J, Morin M, Popovic R (2010) Effect of core–shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii. Aquat Toxicol 96:109–114

    Article  CAS  Google Scholar 

  • Sandalio LM, Rodríguez-Serrano M, Romero-Puertas MC, Del Río LA (2008) Imaging of reactive oxygen species and nitric oxide in vivo in plant tissues. Method Enzymol 440:397–409

    Article  CAS  Google Scholar 

  • Scarpeci TE, Zanor MI, Carrillo N, Mueller-Roeber B, Valle EM (2008) Generation of superoxide anion in chloroplasts of Arabidopsis thaliana during active photosynthesis: a focus on rapidly induced genes. Plant Mol Biol 66:361–378

    Article  CAS  Google Scholar 

  • Shaw AK, Ghosh S, Kalaji HM, Bosa K, Brestic M, Zivcak M, Hossain Z (2014) Nano-CuO stress induced modulation of antioxidative defense and photosynthetic performance of Syrian barley (Hordeum vulgare L.) Env Exp Bot 102:37–47

    Article  CAS  Google Scholar 

  • Shirao M, Kuroki S, Kaneko K, Kinjo Y, Tsuyama M, Förster B, Takahashi S, Badger MR (2013) Gymnosperms have increased capacity for electron leakage to oxygen (Mehler and PTOX reactions) in photosynthesis compared with angiosperms. Plant Cell Physiol 54:1152–1163

    Article  CAS  Google Scholar 

  • Simonet BM, Valcarcel M (2009) Monitoring nanoparticles in the environment. Anal Bioanal Chem 393:17–21

    Article  CAS  Google Scholar 

  • Song G, Hou W, Gao Y, Wang Y, Lin L, Zhang Z, Niu Q, Ma R, Mu L, Wang H (2016) Effects of CuO nanoparticles on Lemna minor. Bot Stud 57:3

    Article  Google Scholar 

  • Sperdouli I, Moustakas M (2012a) Spatio-temporal heterogeneity in Arabidopsis thaliana leaves under drought stress. Plant Biol 14:118–128

    CAS  Google Scholar 

  • Sperdouli I, Moustakas M (2012b) Interaction of proline, sugars, and anthocyanins during photosynthetic acclimation of Arabidopsis thaliana to drought stress. J Plant Physiol 169:577–585

    Article  CAS  Google Scholar 

  • Sperdouli I, Moustakas M (2014a) A better energy allocation of absorbed light in photosystem II and less photooxidative damage contribute to acclimation of Arabidopsis thaliana young leaves to water deficit. J Plant Physiol 171:587–593

    Article  CAS  Google Scholar 

  • Sperdouli I, Moustakas M (2014b) Leaf developmental stage modulates metabolite accumulation and photosynthesis contributing to acclimation of Arabidopsis thaliana to water deficit. J Plant Res 127:481–489

    Article  CAS  Google Scholar 

  • Sperdouli I, Moustakas M (2015) Differential blockage of photosynthetic electron flow in young and mature leaves of Arabidopsis thaliana by exogenous proline. Photosynthetica 53:471–477

    Article  CAS  Google Scholar 

  • Takahashi S, Badger MR (2011) Photoprotection in plants: a new light on photosystem II damage. Trends Plant Sci 16:53–60

    Article  CAS  Google Scholar 

  • Triantaphylidès C, Krischke M, Hoeberichts FA, Ksas B, Gresser G, Havaux M, Van Breusegem F, Mueller MJ (2008) Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiol 148:960–968

    Article  Google Scholar 

  • Villares R, Puente X, Carballeira A (2002) Seasonal variation and background levels of heavy metals in two green seaweeds. Environ Pollut 119:79–90

    Article  CAS  Google Scholar 

  • Wilson KE, Ivanov AG, Öquist G, Grodzinski B, Sarhan F, Huner NPA (2006) Energy balance, organellar redox status, and acclimation to environmental stress. Can J Bot 84:1355–1370

    Article  CAS  Google Scholar 

  • Witoń D, Gawroński P, Czarnocka W, Ślesak I, Rusaczonek A, Sujkowska-Rybkowska M, Bernacki MJ, Dąbrowska-Bronk J, Tomsia N, Szechyńska-Hebda M, Karpiński S (2016) Mitogen activated protein kinase 4 (MPK4) influences growth in Populus tremula L. X tremuloides. Env Exp Bot 130:189–205

    Article  Google Scholar 

Download references

Acknowledgments

Authors are grateful to Associate Professor Dr. Dimitrios Fatouros (Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki) for nanoparticle characterization using DLS and zeta potential, Associate Professor Dr. Eleni Pavlidou (Department of Solid State Physics, School of Physics, Aristotle University of Thessaloniki) for SEM imaging of nanoparticles, and Dr. Ioannis-Dimosthenis Adamakis (Department of Botany, School of Biology, Aristotle University of Thessaloniki) for H2O2 measurements. This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Moustakas.

Additional information

Responsible editor: Elena Maestri

Highlights

• The uptake kinetics was rapid during the first 4 h exposure of Cymodocea to 5 and 10 mg L−1 CuO NPs.

• Short-term (4 h) exposure to 5 mg L−1 CuO NPs resulted in the maximum H2O2 production.

• Non-photochemical quenching (NPQ) was inefficient as a protective mechanism at 5 mg L−1 CuO NPs.

• Longer-duration exposure (48 and 72 h) had less effect on photosystem II functioning.

• Response of C. nodosa leaves to CuO NPs fits the “Threshold for Tolerance Model.”

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moustakas, M., Malea, P., Haritonidou, K. et al. Copper bioaccumulation, photosystem II functioning, and oxidative stress in the seagrass Cymodocea nodosa exposed to copper oxide nanoparticles. Environ Sci Pollut Res 24, 16007–16018 (2017). https://doi.org/10.1007/s11356-017-9174-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9174-3

Keywords

Navigation