Skip to main content

Advertisement

Log in

Integrated management of ash from industrial and domestic combustion: a new sustainable approach for reducing greenhouse gas emissions from energy conversion

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work supports, for the first time, the integrated management of waste materials arising from industrial processes (fly ash from municipal solid waste incineration and coal fly ash), agriculture (rice husk ash), and domestic activities (ash from wood biomass burning in domestic stoves). The main novelty of the paper is the reuse of wood pellet ash, an underestimated environmental problem, by the application of a new technology (COSMOS-RICE) that already involves the reuse of fly ashes from industrial and agricultural origins. The reaction mechanism involves carbonation: this occurs at room temperature and promotes permanent carbon dioxide sequestration. The obtained samples were characterized using XRD and TGA (coupled with mass spectroscopy). This allowed quantification of the mass loss attributed to different calcium carbonate phases. In particular, samples stabilized using wood pellet ash show a weight loss, attributed to the decomposition of carbonates greater than 20%. In view of these results, it is possible to conclude that there are several environmental benefits from wood pellet ash reuse in this way. In particular, using this technology, it is shown that for wood pellet biomass the carbon dioxide conversion can be considered negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energ Combust 36(3):327–363. doi:10.1016/j.pecs.2009.11.003

    Article  CAS  Google Scholar 

  • Arranz JI, Miranda MT, Montero I, Sepúlveda FJ, Rojas CV (2015) Characterization and combustion behavior of commercial and experimental wood pellets in South West Europe. Fuel 142:199–207. doi:10.1016/j.fuel.2014.10.059

    Article  CAS  Google Scholar 

  • Bankiewicz D, Yrjas P, Hupa M (2009) High-temperature corrosion of superheater tube materials exposed to zinc salts†. Energy Fuel 23:3469–3474. doi:10.1021/ef801012z

    Article  CAS  Google Scholar 

  • Bassuoni MT, Nehdi ML (2009) Durability of self-consolidating concrete to different exposure regimes of sodium sulfate attack. Mater Struct 42(8):1039–1057. doi:10.1617/s11527-008-9442-2

    Article  CAS  Google Scholar 

  • Benassi L, Franchi F, Catina D, Cioffi F, Rodella N, Borgese L, Pasquali M, Depero LE, Bontempi E (2015) Rice husk ash to stabilize heavy metals contained in municipal solid waste incineration fly ash: first results by applying new pre-treatment technology. Materials 8(10):6868–6879. doi:10.3390/ma8105346

    Article  CAS  Google Scholar 

  • Benassi L, Pasquali M, Zanoletti A, Dalipi R, Borgese L, Depero LE, Vassura I, Quina MJ, Bontempi E (2016) Chemical stabilization of municipal solid waste incineration fly ash without any commercial chemicals: first pilot-plant scaling up. ACS Sustain Chem Eng 4(10):5561–5569. doi:10.1021/acssuschemeng.6b01294

    Article  CAS  Google Scholar 

  • Bensted J (1999) Thaumasite—background and nature in deterioration of cements, mortars and concretes. Cem Concr Compos 21(2):117–121. doi:10.1016/S0958-9465(97)00076-0

    Article  CAS  Google Scholar 

  • Besco S, Brisotto M, Gianoncelli A, Depero LE, Bontempi E, Lorenzetti A, Modesti M (2013) Processing and properties of polypropylene-based composites containing inertized fly ash from municipal solid waste incineration. J Appl Polym Sci:4157–4164. doi:10.1002/app.39692

  • Besco S, Bosio A, Brisotto M, Depero LE, Lorenzetti A, Bontempi E, Bonora R, Modesti M (2014) Structural and mechanical characterization of sustainable composites based on recycled and stabilized fly ash. Materials 7(8):5920–5933. doi:10.3390/ma7085920

    Article  CAS  Google Scholar 

  • Bontempi E, Zacco A, Borgese L, Gianoncelli A, Ardesi R, Depero LE (2010a) A new method for municipal solid waste incinerator (MSWI) fly ash inertization, based on colloidal silica. J Environ Monit 12(11):2093–2099. doi:10.1039/c0em00168f

    Article  CAS  Google Scholar 

  • Bontempi E, Zacco A, Borgese L, Gianoncelli A, Ardesi R, Depero LE (2010b) A new powder filler, obtained applying a new technology for fly ash inertisation procedure. Adv Sci Technol 62:27–33. doi:10.4028/www.scientific.net/AST.62.27

    Article  CAS  Google Scholar 

  • Bontempi E, Bosio A, Depero LE, Gianoncelli A (2012) patent MI2012A001382

  • Borgese L, Zacco A, Bontempi E, Colombi P, Bertuzzi R, Ferretti E, Tenini S, Depero LE (2009) Total reflection of x-ray fluorescence (TXRF): a mature technique for environmental chemical nanoscale metrology. Meas Sci Technol 20(8):1–7. doi:10.1088/0957-0233/20/8/084027

    Article  CAS  Google Scholar 

  • Bosio A, Rodella N, Gianoncelli A, Zacco A, Borgese L, Depero LE, Bingham PA, Bontempi E (2013) A new method to inertize incinerator toxic fly ash with silica from rice husk ash. Environ Chem Lett 11(4):329–333. doi:10.1007/s10311-013-0411-9

    Article  CAS  Google Scholar 

  • Bosio A, Zacco A, Borgese L, Rodella N, Colombi P, Benassi L, Depero LE, Bontempi E (2014) A sustainable technology for Pb and Zn stabilization based on the use of only waste materials: a green chemistry approach to avoid chemicals and promote CO2 sequestration. Chem Eng J 253:377–384. doi:10.1016/j.cej.2014.04.080

    Article  CAS  Google Scholar 

  • CEN (2002) EN 12457–2 normative. European Committee for Standardization, Brussels

    Google Scholar 

  • Chandrasekaran SR, Hopke PK, Rector L, Allen G, Lin L (2012) Chemical composition of wood chips and wood pellets. Energy Fuel 26(8):4932–4937. doi:10.1021/ef300884k

    Article  CAS  Google Scholar 

  • Colangelo F, Cioffi R, Montagnaro F, Santoro L (2012) Soluble salt removal from MSWI fly ash and its stabilization for safer disposal and recovery as road basement material. Waste Manag 32(6):1179–1185. doi:10.1016/j.wasman.2011.12.013

    Article  CAS  Google Scholar 

  • COSMOS-RICE, PROJECT (http://www.cosmos-rice.csmt.eu/). Accessed 26 July 2016

  • De A, Awasthi A, Tiwari MK (2015) Robust formulation for optimizing sustainable ship routing and scheduling problem. Characterisation of waste - leaching - compliance test for leaching of granular waste materials and sludges - part 2: one stage batch test at a liquid to solid ratio of 10 l/kg for materials with particle size below 4 mm (without or with size reduction). IFAC-PapersOnLine 48(3): 368-373. Europe, 2002

  • EUROSTAT, 2013 (http://ec.europa.eu/eurostat). Accessed 26 July 2016

  • Funari V, Braga R, Bokhari SNH, Dinelli E, Meisel T (2015) Solid residues from Italian municipal solid waste incinerators: a source for “critical” raw materials. Waste Manag 45:206–216. doi:10.1016/j.wasman.2014.11.005

    Article  CAS  Google Scholar 

  • Gaze ME, Crammond NJ (2000) The formation of thaumasite in a cement: lime: sand mortar exposed to cold magnesium and potassium sulfate solutions. Cem Concr Compos 22(3):209–222. doi:10.1016/S0958-9465(00)00002-0

    Article  CAS  Google Scholar 

  • Guarienti M, Gianoncelli A, Bontempi E, Moscoso Cardozo S, Borgese L, Zilioli D, Mitola S, Depero LE, Presta M (2014) Biosafe inertization of municipal solid waste incinerator residues by COSMOS technology. J Hazard Mater 279:311–321. doi:10.1016/j.jhazmat.2014.07.017

    Article  CAS  Google Scholar 

  • Hansson J, Hackl R (2016) The potential influence of sustainability criteria on the European Union pellets market-the example of Sweden. WIREs Energy Environ 5(4):413–429

    Article  Google Scholar 

  • Mehta A, Siddique R (2016) An overview of geopolymers derived from industrial by-products. Constr Build Mater 127:183–198

    Article  CAS  Google Scholar 

  • Mellbo P, Sarenbo S, Stålnacke O, Claesson T (2008) Leaching of wood ash products aimed for spreading in forest floors—influence of method and L/S ratio. Waste Manag 28(11):2235–2244. doi:10.1016/j.wasman.2007.09.037

    Article  CAS  Google Scholar 

  • Niu Y, Tan H, Hui S (2016) Ash-related issues during biomass combustion: alkali-induced slagging, silicate melt-induced slagging (ash fusion), agglomeration, corrosion, ash utilization, and related countermeasures. Prog Energ Combust 52:1–61. doi:10.1016/j.pecs.2015.09.003

    Article  Google Scholar 

  • Orecchio S, Amorello D, Barreca S, Valenti A (2016) Wood pellets for home heating can be considered environmentally friendly fuels? Polycyclic aromatic hydrocarbons (PAHs) in their ashes. Microchem J 124:267–271. doi:10.1016/j.microc.2015.09.003

    Article  CAS  Google Scholar 

  • Ponsot I, Bernardo E, Bontempi E, Depero LE, Detsch R, Chinnam RK, Boccaccini AR (2015) Recycling of pre-stabilized municipal waste incinerator fly ash and soda-lime glass into sintered glass-ceramics. J Clean Prod 89:224–230. doi:10.1016/j.jclepro.2014.10.091

    Article  CAS  Google Scholar 

  • Rahman MM, Bassuoni MT (2014) Thaumasite sulfate attack on concrete: mechanisms, influential factors and mitigation. Constr Build Mater 73:652–662. doi:10.1016/j.conbuildmat.2014.09.034

    Article  Google Scholar 

  • Rodella N, Bosio A, Dalipi R, Zacco A, Borgese L, Depero LE, Bontempi E (2014) Waste silica sources as heavy metal stabilizers for municipal solid waste incineration fly ash. Arab J Chem. doi:10.1016/j.arabjc.2014.04.006

    Article  Google Scholar 

  • Rodella N, Pasquali M, Zacco A, Bilo F, Borgese L, Bontempi N, Tomasoni G, Depero LE, Bontempi E (2016) Beyond waste: new sustainable fillers from fly ashes stabilization, obtained by low cost raw materials. Heliyon 2(9):e00163

    Article  CAS  Google Scholar 

  • Šauman Z (1971) Carbonization of porous concrete and its main binding components. Cem Concr Res 1(6):645–662. doi:10.1016/0008-8846(71)90019-6

    Article  Google Scholar 

  • Siefert NS, Litster S (2013) Exergy and economic analyses of advanced IGCC–CCS and IGFC–CCS power plants. Appl Energy 107:315–328. doi:10.1016/j.apenergy.2013.02.006

    Article  CAS  Google Scholar 

  • Song K, Jang YN, Kim W, Lee MG, Shin D, Bang JH, Jeon CW, Chae SC (2012) Precipitation of calcium carbonate during direct aqueous carbonation of flue gas desulfurization gypsum. Chem Eng J 213:251–258. doi:10.1016/j.cej.2012.10.010

    Article  CAS  Google Scholar 

  • Struis RPWJ, Pasquali M, Borgese L, Gianoncelli A, Gelfi M, Colombi P, Thiaudiere D, Depero LE, Rizzo G, Bontempi E (2013) Inertisation of heavy metals in municipal solid waste incineration fly ash by means of colloidal silica - a synchrotron X-ray diffraction and absorption study. RSC Adv 3(34):14339–14351. doi:10.1039/C3RA41792A

    Article  CAS  Google Scholar 

  • Thiery M, Villain G, Dangla P, Platret G (2007) Investigation of the carbonation front shape on cementitious materials: effects of the chemical kinetics. Cem Concr Res 37(7):1047–1058. doi:10.1016/j.cemconres.2007.04.002

    Article  CAS  Google Scholar 

  • Valverde JM, Sanchez-Jimenez PE, Perez-Maqueda LA (2015) Ca-looping for postcombustion CO2 capture: a comparative analysis on the performances of dolomite and limestone. Appl Energy 138:202–215. doi:10.1016/j.apenergy.2014.10.087

    Article  CAS  Google Scholar 

  • Vassilev SV, Baxter D, Andersen LK, Vassileva CG (2013a) An overview of the composition and application of biomass ash. Fuel 105:19–39. doi:10.1016/j.fuel.2012.09.041

    Article  CAS  Google Scholar 

  • Vassilev SV, Baxter D, Vassileva CG (2013b) An overview of the behaviour of biomass during combustion: part I Phase-mineral transformations of organic and inorganic matter. Fuel 112:391–449. doi:10.1016/j.fuel.2013.05.043

    Article  CAS  Google Scholar 

  • Xin-gang Z, Gui-wu J, Ang L, Yun L (2016) Technology, cost, a performance of waste-to-energy incineration industry in China. Renew Sust Energ Rev 55:115–130. doi:10.1016/j.rser.2015.10.137

    Article  Google Scholar 

  • Yang J, Wang Q, Luo Q, Wang Q, Wu T (2009) Biosorption behavior of heavy metals in bioleaching process of MSWI fly ash by Aspergillus niger. Biochem Eng J 46(3):294–299. doi:10.1016/j.bej.2009.05.022

    Article  CAS  Google Scholar 

  • Ye N, Chen Y, Yang J, Liang S, Hu Y, Xiao B, Huang Q, Shi Y, Hu J, Wu X (2016) Co-disposal of MSWI fly ash and Bayer red mud using an one-part geopolymeric system. J Hazard Mater 318:70–78. doi:10.1016/j.jhazmat.2016.06.042

    Article  CAS  Google Scholar 

  • Zacco A, Borgese L, Gianoncelli A, Struis RWJ, Depero LE, Bontempi E (2014) Review of fly ash inertisation treatments and recycling. Environ Chem Lett 12(1):153–175. doi:10.1007/s10311-014-0454-6

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by LIFE+, the financial instrument of the European Community to support environmental projects (LIFE+ 2011 project ENV/IT/000256). This activity was realized in the frame of MINEA (Mining the European Anthroposphere) COST Action.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elza Bontempi.

Additional information

Responsible editor: Philippe Garrigues

To the memory of Serena Sganzerla

Electronic supplementary material

ESM 1

(JPEG 719 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benassi, L., Dalipi, R., Consigli, V. et al. Integrated management of ash from industrial and domestic combustion: a new sustainable approach for reducing greenhouse gas emissions from energy conversion. Environ Sci Pollut Res 24, 14834–14846 (2017). https://doi.org/10.1007/s11356-017-9037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9037-y

Keywords

Navigation