Skip to main content

Advertisement

Log in

Evaluation of passive sampling of gaseous mercury using different sorbing materials

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Atmospheric mercury monitoring is essential because of its potential human health and ecological impacts. Current automated monitoring systems include limitations such as high cost, complicated configuration, and electricity requirements. Passive samplers require no electric power and are more appropriate for screening applications and long-term monitoring. Sampling rate is a major factor to evaluate the performance of a passive sampler. In this study, laboratory experiments were carried out using an exposure chamber to search for high efficiency sorbents for gaseous mercury. Four types of sorbents, including sulfur-impregnated carbon (SIC), chlorine-impregnated carbon (CIC), bromine-impregnated carbon (BIC), and gold-coated sand (GCS) were evaluated under a wide range of meteorological parameters, including temperature, relative humidity, and wind speed. The results showed that the four sorbents all have a high sampling rate above 0.01 m3g−1 day−1, and wind speed has a positive correlation with the sampling rate. Under different temperature and relative humidity, the sampling rate of SIC keeps stable. The sampling rate of CIC and BIC shows a negative correlation with temperature, and GCS is influenced by all the three meteorological factors. Furthermore, long-term experiments were carried out to investigate the uptake capacity of GCS and SIC. Uptake curves show that the mass amount of sorbent in a passive sampler can influence uptake capacity. In the passive sampler, 0.9 g SIC or 0.9 g GCS can achieve stable uptake efficiency for at least 110 days with gaseous mercury concentration at or below 2 ng/m3. For mercury concentration at or below 21 ng/m3, 0.9 g SIC can maintain stable uptake efficiency for 70 days, and 0.9 g GCS can maintain stability for 45 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bogdal C, Scheringer M, Abad E, Abalos M, Van Bavel B, Hagberg J, Fiedler H (2013) Worldwide distribution of persistent organic pollutants in air, including results of air monitoring by passive air sampling in five continents. TrAC Trends Anal Chem 46:150–161

    Article  CAS  Google Scholar 

  • Brown RJC, Burdon MK, Brown AS, Kim K-H (2012) Assessment of pumped mercury vapour adsorption tubes as passive samplers using a micro-exposure chamber. J Environ Monit 14:2456

    Article  CAS  Google Scholar 

  • Brumbaugh W, Petty J, May T, Huckins J (2000) A passive integrative sampler for mercury vapor in air and neutral mercury species in water. Chem Global Change Sci 2:1–9

    Article  CAS  Google Scholar 

  • Du W, Yin L, Zhuo Y, Xu Q, Zhang L, Chen C (2014) Catalytic oxidation and adsorption of elemental mercury over CuCl2-impregnated sorbents. Industrial & Engineering Chem Res 53:582–591

    Article  CAS  Google Scholar 

  • Ebinghaus R, Kock H, Coggins A, Spain T, Jennings S, Temme C (2002) Long-term measurements of atmospheric mercury at Mace Head, Irish west coast, between 1995 and 2001. Atmos Environ 36:5267–5276

    Article  CAS  Google Scholar 

  • Fang G-C, Wu Y-S, Chang T-H (2009) Comparison of atmospheric mercury (Hg) among Korea, Japan, China and Taiwan during 2000–2008. J Hazard Mater 162:607–615

    Article  CAS  Google Scholar 

  • Fu X, Feng X, Zhang H (2011) Atmospheric total gaseous mercury concentration in Guiyang: measurements intercomparison with Lumex RA-915AM and Tekran 2537A. Chinese J Ecology 30:939–943

    Google Scholar 

  • Fu X, Feng X, Sommar J, Wang S (2012) A review of studies on atmospheric mercury in China. Sci Total Environ 421:73–81

    Article  Google Scholar 

  • Gay DA, Schmeltz D, Prestbo E, Olson M, Sharac T, Tordon R (2013) The Atmospheric Mercury Network: measurement and initial examination of an ongoing atmospheric mercury record across North America. Atmos Chem and Phys 13:11339–11349

    Article  CAS  Google Scholar 

  • Ghorishi SB, Keeney RM, Serre SD, Gullett BK, Jozewicz WS (2002) Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury. Environ. Sci. Technol. 36:4454–4459

    Article  CAS  Google Scholar 

  • Guo H, Lin H, Zhang W, Deng C, Wang H, Zhang Q, Shen Y, Wang X (2014) Influence of meteorological factors on the atmospheric mercury measurement by a novel passive sampler. Atmos Environ 97:310–315

    Article  CAS  Google Scholar 

  • Gustin MS, Lyman SN, Kilner P, Prestbo E (2011) Development of a passive sampler for gaseous mercury. Atmos Environ 45:5805–5812

    Article  CAS  Google Scholar 

  • Gustin MS, Huang J, Miller MB, Peterson C, Jaffe DA, Ambrose J, Finley BD, Lyman SN, Call K, Talbot R (2013) Do we understand what the mercury speciation instruments are actually measuring? Results of RAMIX. Environ. Sci. Technol. 47:7295–7306

    Article  CAS  Google Scholar 

  • Harner T, Bartkow M, Holoubek I, Klanova J, Wania F, Gioia R, Moeckel C, Sweetman AJ, Jones KC (2006) Passive air sampling for persistent organic pollutants: introductory remarks to the special issue. Environ Pollut 144:361–364

    Article  CAS  Google Scholar 

  • Huang J, Choi H-D, Landis MS, Holsen TM (2012) An application of passive samplers to understand atmospheric mercury concentration and dry deposition spatial distributions. J Environ Monit 14:2976–2982

    Article  CAS  Google Scholar 

  • Huang J, Lyman SN, Hartman JS, Gustin MS (2014) A review of passive sampling systems for ambient air mercury measurements. Environ Sci Process Impacts 16:374–392

    Article  CAS  Google Scholar 

  • Hutson ND, Attwood BC, Scheckel KG (2007) XAS and XPS characterization of mercury binding on brominated activated carbon. Environ. Sci. Technol. 41:1747–1752

    Article  CAS  Google Scholar 

  • Krishnan S, Gullett BK, Jozewicz W (1994) Sorption of elemental mercury by activated carbons. Environ. Sci. Technol. 28:1506–1512

    Article  CAS  Google Scholar 

  • Lee SH, Rhim YJ, Cho SP, Baek JI (2006) Carbon-based novel sorbent for removing gas-phase mercury. Fuel 85:219–226

    Article  CAS  Google Scholar 

  • Lindberg Sa, Stratton W (1998) Atmospheric mercury speciation: concentrations and behavior of reactive gaseous mercury in ambient air. Environ. Sci. Technol. 32:49–57

    Article  CAS  Google Scholar 

  • Liu S, Nadim F, Perkins C, Carley RJ, Hoag GE, Lin Y, Chen L (2002) Atmospheric mercury monitoring survey in Beijing, China. Chemosphere 48:97–107

    Article  CAS  Google Scholar 

  • Lyman S, Jaffe D, Gustin M (2010a) Release of mercury halides from KCl denuders in the presence of ozone. Atom. Chem. Phys. 10:8197–8204

    Article  CAS  Google Scholar 

  • Lyman SN, Gustin MS, Prestbo EM (2010b) A passive sampler for ambient gaseous oxidized mercury concentrations. Atmos Environ 44:246–252

    Article  CAS  Google Scholar 

  • Lynam MM, Dvonch JT, Hall NL, Morishita M, Barres JA (2014) Spatial patterns in wet and dry deposition of atmospheric mercury and trace elements in central Illinois, USA. Environ Sci Pollut Res 21:4032–4043

    Article  CAS  Google Scholar 

  • Marusczak N, Sonke JE, Fu X, Jiskra M (2016) Tropospheric GOM at the Pic du Midi Observatory–correcting bias in denuder based observations. Environ. Sci. Technol.

  • McLagan DS, Mitchell CP, Huang H, Lei YD, Cole AS, Steffen A, Hung H, Wania F (2015) A high-precision passive air sampler for gaseous mercury. Environ Sci Technol Lett 3:24–29

    Article  Google Scholar 

  • McLagan DS, Mazur MEE, Mitchell CPJ, Wania F (2016) Passive air sampling of gaseous elemental mercury: a critical review. Atom. Chem. Phys. 16:3061–3076

    Article  CAS  Google Scholar 

  • NISHIKAWA M, SHIRAISHI H, YANASE R, TANIDA K (1999) Examination of an improved passive sampler for gaseous mercury on the landfill site. J Environ Chem 9:681–684

    Article  CAS  Google Scholar 

  • Padak B, Brunetti M, Lewis A, Wilcox J (2006) Mercury binding on activated carbon. Environ Prog 25:319–326

    Article  CAS  Google Scholar 

  • Plaisance H, Piechocki-Minguy A, Garcia-Fouque S, Galloo J (2004) Influence of meteorological factors on the NO 2 measurements by passive diffusion tube. Atmos Environ 38:573–580

    Article  CAS  Google Scholar 

  • Pozo K, Harner T, Lee SC, Sinha RK, Sengupta B, Loewen M, Geethalakshmi V, Kannan K, Volpi V (2011) Assessing seasonal and spatial trends of persistent organic pollutants (POPs) in Indian agricultural regions using PUF disk passive air samplers. Environ Pollut 159:646–653

    Article  CAS  Google Scholar 

  • Rex M, Hernandez FE, Campiglia AD (2006) Pushing the limits of mercury sensors with gold nanorods. Anal Chem 78:445–451

    Article  CAS  Google Scholar 

  • Seigneur C, Vijayaraghavan K, Lohman K, (2006) Atmospheric mercury chemistry: sensitivity of global model simulations to chemical reactions. J Geo Res: Atmos 111

  • Selin NE (2009) Global biogeochemical cycling of mercury: a review. Annu Rev Environ Res 34:43

    Article  Google Scholar 

  • Sholupov S, Pogarev S, Ryzhov V, Mashyanov N, Stroganov A (2004) Zeeman atomic absorption spectrometer RA-915+ for direct determination of mercury in air and complex matrix samples. Fuel Process Technol 85:473–485

    Article  CAS  Google Scholar 

  • Skov H, Sørensen BT, Landis MS, Johnson MS, Sacco P, Goodsite ME, Lohse C, Christiansen KS (2007) Performance of a new diffusive sampler for Hg0 determination in the troposphere. Environ Chem 4:75–80

    Article  CAS  Google Scholar 

  • Söderström HS, Bergqvist P-A (2004) Passive air sampling using semipermeable membrane devices at different wind-speeds in situ calibrated by performance reference compounds. Environ. Sci. Technol. 38:4828–4834

    Article  Google Scholar 

  • Sprovieri F, Pirrone N, Ebinghaus R, Kock H, Dommergue A (2010) A review of worldwide atmospheric mercury measurements. Atom Chem Phys 10:8245–8265

    Article  CAS  Google Scholar 

  • Strandberg B, Sunesson A-L, Sundgren M, Levin J-O, Sällsten G, Barregard L (2006) Field evaluation of two diffusive samplers and two adsorbent media to determine 1, 3-butadiene and benzene levels in air. Atmos Environ 40:7686–7695

    Article  CAS  Google Scholar 

  • Suresh Kumar Reddy K, Al Shoaibi A, Srinivasakannan C (2014) Elemental mercury adsorption on sulfur-impregnated porous carbon—a review. Environ Technol 35:18–26

    Article  CAS  Google Scholar 

  • Tuduri L, Harner T, Hung H (2006) Polyurethane foam (PUF) disks passive air samplers: wind effect on sampling rates. Environ Pollut 144:377–383

    Article  CAS  Google Scholar 

  • Vidic RD, Siler DP (2001) Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon 39:3–14

    Article  CAS  Google Scholar 

  • Yang Y, Chen H, Wang D (2009) Spatial and temporal distribution of gaseous elemental mercury in Chongqing. China Environ Monit Assess 156:479–489

    Article  CAS  Google Scholar 

  • Zeng H, Jin F, Guo J (2004) Removal of elemental mercury from coal combustion flue gas by chloride-impregnated activated carbon. Fuel 83:143–146

    Article  Google Scholar 

  • Zhang W, Tong Y, Hu D, Ou L, Wang X (2012) Characterization of atmospheric mercury concentrations along an urban–rural gradient using a newly developed passive sampler. Atmos Environ 47:26–32

    Article  Google Scholar 

  • Zhang X, Brown TN, Ansari A, Yeun B, Kitaoka K, Kondo A, Lei YD, Wania F (2013) Effect of wind on the chemical uptake kinetics of a passive air sampler. Environ Sci Technol 47:7868–7875

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the National Natural Science Foundation of China (41471403, 41571130010, 41671492, and 41630748), National Science Foundation of Tianjin (# 16JCQNJC08300), and the Undergraduate Student Research Training Program.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Xuejun Wang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Zhang, W., Deng, C. et al. Evaluation of passive sampling of gaseous mercury using different sorbing materials. Environ Sci Pollut Res 24, 14190–14197 (2017). https://doi.org/10.1007/s11356-017-9018-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-9018-1

Keywords

Navigation