Skip to main content

Advertisement

Log in

Biological impacts of local vs. regional land use on a small tributary of the Seine River (France): insights from a food web approach based on stable isotopes

  • Spatial and temporal patterns of anthropogenic influence in a large river basin. A multidisciplinary approach
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

As part of the landscape, streams are influenced by land use. Here, we contributed to the understanding of the biological impacts of land use on streams, investigating how landscape effects vary with spatial scales (local vs. regional). We adopted a food web approach integrating both biological structure and functioning, to focus on the overall effect of land use on stream biocœnosis. We selected 17 sites of a small tributary of the Seine River (France) for their contrasted land use, and conducted a natural experiment by sampling three organic matter sources, three macroinvertebrate taxa, and most of the fish community. Using stable isotope analysis, we calculated three food web metrics evaluating two major dimensions of the trophic diversity displayed by the fish community: (i) the diversity of exploited resources and (ii) the trophic level richness. The idea was to examine whether (1) land-use effects varied according to spatial scales, (2) land use affected food webs through an effect on community structure and (3) land use affected food webs through an effect on available resources. Beside an increase in trophic diversity from upstream to downstream, our empirical data showed that food webs were influenced by land use in the riparian corridors (local scale). The effect was complex, and depended on site’s position along the upstream-downstream gradient. By contrast, land use in the catchment (regional scale) did not influence stream biocœnosis. At the local scale, community structure was weakly influenced by land use, and thus played a minor role in explaining food web modifications. Our results suggested that the amount of available resources at the base of the food web was partly responsible for food web modifications. In addition, changes in biological functioning (i.e. feeding interactions) can also explain another part of the land-use effect. These results highlight the role played by the riparian corridors as a buffer zone, and advocate that riparian corridor should be at the centre of water management attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Allan J (2004) Landscapes and riverscapes: the influence of land use on stream ecosystems. Annu Rev Ecol Evol S 35:257–284

    Article  Google Scholar 

  • Allan J, Erickson D, Fay J (1997) The influence of catchment land use on stream integrity across multiple spatial scales. Freshw Biol 37:149–161

    Article  Google Scholar 

  • Anderson C, Cabana G (2005) δ15N in riverine food webs: effects of N inputs from agricultural watersheds. Can JFish Aquat Sci 62:333–340

    Article  CAS  Google Scholar 

  • Anderson C, Cabana G (2007) Estimating the trophic position of aquatic consumers in river food webs using stable nitrogen isotopes. J N Am Benthol Soc 26:273–285

    Article  CAS  Google Scholar 

  • Argent D, Carline R (2004) Fish assemblage changes in relation to watershed land use disturbance. Aquat Ecosyst Health 7:101–114. doi:10.1080/14634980490281407

    Article  Google Scholar 

  • Bentivoglio F, Calizza E, Rossi D, Carlino P, Careddu G, Rossi L, Costantini M (2015) Site-scale isotopic variations along a river course help localize drainage basin influence on river food webs. Hydrobiologia 770:257–272. doi:10.1007/s10750-015-2597-2

    Article  CAS  Google Scholar 

  • Bergfur J (2013) Temporal variation in carbon and nitrogen isotope ratios of aquatic biota in two contrasting boreal streams. Fund Appl Limnol 182:205–218. doi:10.1127/1863-9135/2013/0410

    Article  CAS  Google Scholar 

  • Boecklen WJ, Yarnes CT, Cook BA, James AC (2011) On the use of stable isotopes in trophic ecology. Annu Rev Ecol Evol S 42:411–440. doi:10.1146/annurevecolsys-102209-144726

    Article  Google Scholar 

  • Borcard D, Gillet F, Legendre P (2011) Numerical ecology with R. Use R! Series, Springer,New York.

  • Bott TL, Newbold JD, Arscott D (2006) Ecosystem metabolism in piedmont streams: reach geomorphology modulates the influence of riparian vegetation. Ecosystems 9:398–421

    Article  Google Scholar 

  • Chang HY, Wu SH, Shao KT, Kao WY, Maa CJ, Jan RQ, Liu LL, Tzeng CS, Hwang JS, Hsieh HL, Kao SJ, Chen YK, Lin HJ (2012) Longitudinal variation in food sources and their use by aquatic fauna along a subtropical river in Taiwan. Freshw Biol 57:1839–1853. doi:10.1111/j.1365-2427.2012.02843.x

    Article  Google Scholar 

  • Crane D, Johengen T, Allan J (2011) Assessment of quantitative food web metrics for investigating the influence of land use on warm water fish diets. Hydrobiologia 664:1–15

    Article  Google Scholar 

  • di Lascio A, Rossi L, Carlino P, Calizza E, Rossi D, Costantini M (2013) Stable isotope variation in macroinvertebrates indicates anthropogenic disturbance along an urban stretch of the river Tiber (Rome, Italy). Ecol Indic 28:107–114. doi:10.1016/j.ecolind.2012.04.006

    Article  CAS  Google Scholar 

  • Docile T, Rosa D, Figueiró R, Nessimian J (2016) Urbanisation alters the flow of energy through stream food webs. Insect Conserv Diver. doi:10.1111/icad.12176

    Article  Google Scholar 

  • Feld C, Birk S, Bradley D, Hering D, Kail J, Marzin A, Melcher A, Nemitz D, Pedersen M, Pletterbauer F, Pont D, Verdonschot P, Friberg N (2011) From natural to degraded rivers and back again. A test of restoration ecology theory and practice. Adv Ecol Res 44:119–209

    Article  Google Scholar 

  • Friberg N, Bonada N, Bradley D, Dunbar M, Edwards F, Grey J, Hayes R, Hildrew A, Lamouroux N, Trimmer M, Woodward G (2011) Biomonitoring of human impacts in freshwater ecosystems. The good, the bad and the ugly. Adv Ecol Res 44:1–68

    Article  Google Scholar 

  • Guilpart A, Roussel J, Aubin J, Caquet T, Marle M, Le Bris H (2012) The use of benthic invertebrate community and water quality analyses to assess ecological consequences of fish farm effluents in rivers. Ecol Indic 23:356–365

    Article  CAS  Google Scholar 

  • Herringshaw C, Stewart T, Thompson J, Anderson P (2011) Land use, stream habitat and benthic invertebrate assemblages in a highly altered Iowa watershed. Am Midl Nat 165:274–293. doi:10.1674/0003-0031-165.2.274

    Article  Google Scholar 

  • Hette-Tronquart N, Mazeas L, Reuilly-Manenti L, Zahm A, Belliard J (2012) Fish fins as non-lethal surrogates for muscle tissues in freshwater food web studies using stable isotopes. Rapid Commun Mass Sp 26:1603–1608. doi:10.1002/rcm.6265

    Article  CAS  Google Scholar 

  • Hette-Tronquart N, Belliard J, Tales E, Oberdorff T (2016) Stable isotopes reveal food web modifications along the upstream–downstream gradient of a temperate stream. Aquat Sci 78:255–265. doi:10.1007/s00027-015-0421-8

    Article  Google Scholar 

  • Hladyz S, Åbjörnsson K, Chauvet E, Dobson M, Elosegi A, Ferreira V, Fleituch T, Gessner M, Giller P, Gulis V, Hutton S, Lacoursière J, Lamothe S, Lecerf A, Malmqvist B, McKie B, Nistorescu M, Preda E, Riipinen M, Rîsnoveanu G, Schindler M, Tiegs S, Vought L, Woodward G (2011) Stream ecosystem functioning in an agricultural landscape. The importance of terrestrial-aquatic linkages. Adv Ecol Res 44:211–276

    Article  Google Scholar 

  • Hynes H (1975) Edgardo Baldi memorial lecture, the stream and its valley. Verhandlungen des Internationalen Verein Limnologie 19:1–15

    Google Scholar 

  • Ibañez C, Belliard J, Hughes R, Irz P, Kamdem-Toham A, Lamouroux N, Tedesco P, Oberdorff T (2009) Convergence of temperate and tropical stream fish assemblages. Ecography 32:658–670. doi:10.1111/j.1600-0587.2008.05591.x

    Article  Google Scholar 

  • Jackson A, Inger R, Parnell A, Bearhop S (2011) Comparing isotopic niche widths among and within communities: Siber - Stable Isotope Bayesian Ellipses in R. J Anim Ecol 80:595–602. doi:10.1111/j.1365-2656.2011.01806.x

    Article  Google Scholar 

  • Layman C, Arrington D, Montaña C, Post D (2007) Can stable isotope ratios provide for community-wide measures of trophic structure ? Ecology 88:42–48. doi:10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2

    Article  Google Scholar 

  • Liess A, Le Gros A, Wagenhoff A, Townsend CR, Matthaei CD (2012) Land use intensity in stream catchments affects the benthic food web: consequences for nutrient supply, periphyton C: nutrient ratios, and invertebrate richness and abundance. Freshwater Sci 31:813–824

    Article  Google Scholar 

  • Liu Z, Wang Y, Li Z, Peng J (2013) Impervious surface impact on water quality in the process of rapid urbanization in Shenzhen, China. Environmental Earth Sciences 68:2365–2373. doi:10.1007/s12665-012-1918-2

    Article  CAS  Google Scholar 

  • Lu Y, Canuel E, Bauer J, Chambers R (2014) Effects of watershed land use on sources and nutritional value of particulate organic matter in temperate headwater streams. Aquat Sci 76:419–436. doi:10.1007/s00027-014-0344-9

    Article  CAS  Google Scholar 

  • Maloney K, Weller D (2011) Anthropogenic disturbance and streams: land use and land-use change affect stream ecosystems via multiple pathways. Freshw Biol 56:611–626. doi:10.1111/j.1365-2427.2010.02522.x

    Article  Google Scholar 

  • Martínez A, Larrañaga A, Miguélez A, Yvon-Durocher G, Pozo J (2016) Land use change affects macroinvertebrate community size spectrum in streams : the case of Pinus radiata plantations. Freshw Biol 61:69–79. doi:10.1111/fwb.12680

    Article  Google Scholar 

  • Marzin A, Verdonschot P, Pont D (2013) The relative influence of catchment, riparian corridor, and reach-scale anthropogenic pressures on fish and macroinvertebrate assemblages in French rivers. Hydrobiologia 704:375–388. doi:10.1007/s10750-012-1254-2

    Article  Google Scholar 

  • Michener R, Lajtha K (2007) Stable isotopes in ecology and environmental science, 2d edn. Blackwell Publishing, Oxford

    Book  Google Scholar 

  • Middelburg J (2014) Stable isotopes dissect aquatic food webs from the top to the bottom. Biogeosciences 11:2357–2371. doi:10.5194/bg-11-2357-2014

    Article  Google Scholar 

  • Moog D, Whiting P (2002) Climatic and agricultural factors in nutrient exports from two watersheds in Ohio. J Environ Qual 31:72–83

    Article  CAS  Google Scholar 

  • Moore J, Lambert T, Heady W, Honig S, Osterback A, Phillis C, Quiros A, Retford N, Herbst D (2014) Anthropogenic land-use signals propagate through stream food webs in a California, USA, watershed. Limnologica 46:124–130. doi:10.1016/j.limno.2014.01.005

    Article  CAS  Google Scholar 

  • Newsome S, Del Rio C, Bearhop S, Phillips D (2007) A niche for isotopic ecology. Front Ecol Environ 5:429–436. doi:10.1890/1540-9295(2007)5[429:ANFIE]2.0.CO;2

    Article  Google Scholar 

  • Oberdorff T, Guilbert E, Lucchetta JC (1993) Patterns of fish species richness in the Seine River basin, France. Hydrobiologia 259:157–167. doi:10.1007/BF00006595

    Article  Google Scholar 

  • Oberdorff T, Pont D, Hugueny B, Porcher JP (2002) Development and validation of a fish-based index (FBI) for the assessment of rivers “health” in France. Freshw Biol 47:1720–1735. doi:10.1046/j.1365-2427.2002.00884.x

    Article  Google Scholar 

  • Oksanen J, Blanchet G, Kindt R, Legendre P, Minchin P, O’Hara R, Simpson G, Solymos P, Stevens M, Wagner H (2015) vegan: Community Ecology Package

  • Paul MJ, Meyer JL (2001) Streams in the urban landscape. Annu Rev Ecol Syst 32:333–365

    Article  Google Scholar 

  • Petts G, Calow P (eds) (1996) River biota: diversity and dynamics. Blackwell Science, Oxford

    Google Scholar 

  • Post D, Takimoto G (2007) Proximate structural mechanisms for variation in food-chain length. Oikos 116:775–782. doi:10.1111/j.2007.0030-1299.15552.x

    Article  Google Scholar 

  • Pouilly M, Rejas D, Pérez T, Duprey JL, Molina C, Hubas C, Guimarães JR (2013) Trophic structure and mercury biomagnification in tropical fish assemblages, Iténez River, Bolivia. PLoS ONE 8. doi:10.1371/journal.pone.0065054

  • Quinn J, Cooper A, Davies-Colley R, Rutherford J, Williamson R (1997) Land use effects on habitat, water quality, periphyton, and benthic invertebrates in Waikato, New Zealand, hill-country streams. New Zeal J Mar Fresh 31:579–597

    Article  CAS  Google Scholar 

  • Rasmussen J, Trudeau V, Morinville G (2009) Estimating the scale of fish feeding movements in rivers using δ13C signature gradients. J Anim Ecol 78:674–685. doi:10.1111/j.1365-2656.2008.01511.x

    Article  Google Scholar 

  • R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ruelland D, Billen G, Brunstein D, Garnier J (2007) Seneque : a multi-scaling GIS interface to the Riverstrahler model of the biogeochemical functioning of river systems. Sci Total Environ 375:257–273. doi:10.1016/j.scitotenv.2006.12.014

    Article  CAS  Google Scholar 

  • Sabo J, Finlay J, Kennedy T, Post D (2010) The role of discharge variation in scaling of drainage area and food chain length in rivers. Science 330:965–967. doi:10.1126/science.1196005

    Article  CAS  Google Scholar 

  • Scarsbrook M, Quinn J, Halliday J, Morse R (2001) Factors controlling litter input dynamics in streams draining pasture, pine, and native forest catchments. New Zeal J Mar Fresh 35:751–762

    Article  Google Scholar 

  • Schofield K, Pringle C, Meyer J, Rosi-Marshall E (2008) Functional redundancy of stream macroconsumers despite differences in catchment land use. Freshw Biol 53:2587–2599

    Article  Google Scholar 

  • Semmens B, Ward E, Moore J, Darimont C (2009) Quantifying inter-and intra-population niche variability using hierarchical bayesian stable isotope mixing models. PLoS One 4. doi:10.1371/journal.pone.0006187

  • Sweeney B (1992) Streamside forests and the physical, chemical, and trophic characteristics of piedmont streams in eastern North America. Water Sci Technol 25:2653–2673

    Article  Google Scholar 

  • Sweeney B, Czapka S (2004) Riparian forest restoration: why each site needs an ecological prescription. Forest Ecolo Manag 192:361–373. doi:10.1016/j.foreco.2004.02.005

    Article  Google Scholar 

  • Syväranta J, Lensu A, Marjomäki T, Oksanen S, Jones R (2013) An empirical evaluation of the utility of convex hull and standard ellipse areas for assessing population niche widths from stable isotope data. PLoS One 8. doi:10.1371/journal.pone.0056094

  • Thompson R, Brose U, Dunne J, Hall R, Hladyz S, Kitching R, Martinez N, Rantala H, Romanuk T, Stouffer D, Tylianakis J (2012) Food webs: reconciling the structure and function of biodiversity. Trends Ecol Evol 27:689–697. doi:10.1016/j.tree.2012.08.005

    Article  Google Scholar 

  • Vander Zanden M, Rasmussen J (1999) Primary consumer δ13C and δ15N and the trophic position of aquatic consumers. Ecology 80:1395–1404

    Article  Google Scholar 

  • Vannote R, Minshall G, Cummins K, Sedell J, Cushing C (1980) The river continuum concept. Can J Fish Aquat Sci 37:130–137

    Article  Google Scholar 

  • Werner R, Brand W (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Commun Mass Sp 15:501–519. doi:10.1002/rcm.258

    Article  CAS  Google Scholar 

  • Woodward G, Hildrew A (2002) Food web structure in riverine landscapes. Freshw Biol 47:777–798

    Article  Google Scholar 

  • Young R, Collier K (2009) Contrasting responses to catchment modification among a range of functional and structural indicators of river ecosystem health. Freshw Biol 54:2155–2170

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Grateful acknowledgment is expressed to the HEF team (part of the Hydrosystems and Bioprocesses Research Unit at Irstea, Antony) for assistance in the field and sample preparation. We thank Adrien Rey and the regional natural park “Parc Naturel Régional de la haute vallée de Chevreuse” for advice and participation to field work. Michel Hénin, head of the RGIS department at the “Institut d’Aménagement et d’Urbanisme d’île-de-France”, kindly provided the land cover data. This work was partly funded by the Interdisciplinary Research Program on the Seine River Environment (PIREN-Seine—http://www.sisyphe.upmc.fr/piren/) and by the project 33 of the framework agreement between Irstea and the French National Agency for Water and Aquatic Environments (ONEMA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Hette-Tronquart.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

.

ESM 1

(PDF 221 kb)

.

ESM 2

(PDF 238 kb)

.

ESM 3

(PDF 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hette-Tronquart, N., Oberdorff, T., Tales, E. et al. Biological impacts of local vs. regional land use on a small tributary of the Seine River (France): insights from a food web approach based on stable isotopes. Environ Sci Pollut Res 25, 23583–23594 (2018). https://doi.org/10.1007/s11356-017-8771-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8771-5

Keywords

Navigation