Skip to main content
Log in

Enhancing filterability of activated sludge from landfill leachate treatment plant by applying electrical field ineffective on bacterial life

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate filterability enhancement of activated sludge supplied form a full-scale leachate treatment plant by applying DC electric field while keeping the biological operational conditions in desirable range. The activated sludge samples were received from the nitrification tank in the leachate treatment plant of Istanbul’s Odayeri Sanitary Landfill Site. Experimental sets were conducted as laboratory-scale batch studies and were duplicated for 1A, 2A, 3A, 4A, and 5A of electrical currents and 2, 5, 10, 15, and 30 min of exposure times under continuous aeration. Physicochemical parameters such as temperature, pH, and oxidation reduction potential in the mixture right after each experimental set and biochemical parameters such as chemical oxygen demand, total phosphorus, and ammonia nitrogen in supernatant were analyzed to define the sets that remain in the range of ideal biological operational conditions. Later on, sludge filterability properties such as capillary suction time, specific resistance to filtration, zeta potential, and particle size were measured for remaining harmless sets. Additionally, cost analyses were conducted in respect to energy and electrode consumptions. Application of 2A DC electric field and 15-min exposure time was found to be the most favorable conditions to enhance filterability of the landfill leachate-activated sludge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adhoum N, Monser L, Bellakhal N, Belgaied JE (2004) Treatment of electroplating wastewater containing Cu2+, Zn2+ and Cr(VI) by electrocoagulation. J Hazard Mater 112(3):207–213. doi:10.1016/j.jhazmat.2004.04.018

    Article  CAS  Google Scholar 

  • American Health Association (APHA) (2005) Standard methods for the examination of water and wastewater, 21st edition. Washington, DC

  • Bani-Melhem KQ (2008) Development of a novel submerged membrane electro-bioreactor for wastewater treatment. Dissertation in Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, Quebec

  • Bani-Melhem K, Elektorowicz M (2010) Development of a novel submerged membrane electro-bioreactor (SMEBR): performance for fouling reduction. Environ Sci Technol 44(9):3298–3304. doi:10.1021/es902145g

    Article  CAS  Google Scholar 

  • Bayar S, Karagunduz A (2014) Influence of electrical field on COD removal and filterability of activated sludge. Desalination Water Treat 52(7–9):1316–1323. doi:10.1080/19443994.2013.787952

    Article  CAS  Google Scholar 

  • Brenner RC, Convery JJ (1980) Status of deep shaft wastewater treatment technology in North America. In: Seventh United States/Japan Conference On Sewage Treatment Technology. Tokyo, pp 777–824

  • Chen JP, Yang CZ, Zhouc JH, Wang XY (2007) Study of the influence of the electric field on membrane flux of a new type of membrane bioreactor. Chem Eng J 128:177–180. doi:10.1016/j.cej.2006.10.010

    Article  CAS  Google Scholar 

  • Chen C, Zhang P, Zeng G, Deng J, Zhou Y, Lu H (2010) Sewage sludge conditioning with coal fly ash modified by sulfuric acid. Chem Eng J 158:616–622. doi:10.1016/j.cej.2010.02.021

    Article  CAS  Google Scholar 

  • Chiang LC, Chang JE, Chung CT (2001) Electrochemical oxidation combined with physical-chemical pretreatment processes for the treatment of refractory landfill leachate. Environ Eng Sci 18(6):369–379. doi:10.1089/109287501753359609

    Article  CAS  Google Scholar 

  • Choi YG, Kim SH, Kim HJ, Kim YJ, Chung TH (2009) Effects of current density and electrode material on the dewaterability of the thickened activated sludge by electro-flotation. J Chem Technol Biot 84(10):1493–1498. doi:10.1002/jctb.2207

    Article  CAS  Google Scholar 

  • Demirbas E, Kobya M (2017) Operating cost and treatment of metalworking fluid wastewater by chemical coagulation and electrocoagulation processes. Process Saf Environ 105:79–90. doi:10.1016/j.psep.2016.10.013

    Article  CAS  Google Scholar 

  • Eyvaz M (2016) Treatment of brewery wastewater with electrocoagulation: improving the process performance by using alternating pulse current. Int J Electrochem Sci 11:4988–5008. doi:10.20964/2016.06.11

    Article  CAS  Google Scholar 

  • Gale RS, Baskerville RC (1967) Capillary suction method for determination of filtration properties of a solid/liquid suspension. Chem Ind 9:336–355

    Google Scholar 

  • Gerardi MH (2002) Settleability problems and loss of solids in the activated sludge process. John Wiley & Sons, Hoboken

  • Gharabi H, Sowlat MH, Mahvi AH, Keshavarz M, Safari MH, Lotfi S, Abadi MB, Alijanzadeh A (2013) Performance evaluation of a bipolar electrolysis/electrocoagulation (EL/EC) reactor to enhance the sludge dewaterability. Chemosphere 90(4):1487–1494. doi:10.1016/j.chemosphere.2012.09.069

    Article  Google Scholar 

  • Hashisho J, El-Fadel M, Al-Hindi M, Salam D, Alameddine I (2016) Hollow fiber vs. flat sheet MBR for the treatment of high strength stabilized landfill leachate. Waste Manag 55:249–256. doi:10.1016/j.wasman.2015.12.016

    Article  CAS  Google Scholar 

  • Hennebert P, Avellan A, Yan J, Aguerre-Chariol O (2013) Experimental evidence of colloids and nanoparticles presence from 25 waste leachates. Waste Manag 33:1870–1881. doi:10.1016/j.wasman.2013.04.014

    Article  CAS  Google Scholar 

  • Hua LC, Huang C, Su YC, Chen PC (2015) Effects of electro-coagulation on fouling mitigation and sludge characteristics in a coagulation-assisted membrane bioreactor. J Membr Sci 495:29–36. doi:10.1016/j.memsci.2015.07.062

    Article  CAS  Google Scholar 

  • Huang X, Wu J (2008) Improvement of membrane filterability of the mixed liquor in a membrane bioreactor by ozonation. J Membr Sci 318:210–216. doi:10.1016/j.memsci.2008.02.031

    Article  CAS  Google Scholar 

  • Humenik FJ, Overcash MR (1976) Design criteria for swine waste treatment systems. Raleigh, North Carolina. EPA-600/2-76-233

  • Ilhan F, Kurt U, Apaydin O, Gonullu MT (2008) Treatment of leachate by electrocoagulation using aluminum and iron electrodes. J Hazard Mater 154(1–3):381–389. doi:10.1016/j.jhazmat.2007.10.035

    Article  CAS  Google Scholar 

  • Istanbul Environmental Management Industry and Trade (ISTAC) (2014) Activity report of 2014 (in Turkish) http://istac.com.tr/contents/68/faaliyet-raporlari_130855882526291787.pdf. Accessed 16 March 2016

  • Judd S (2011) The MBR book, principles and applications of membrane bioreactors for water and wastewater treatment. Oxford: Butterworth-Heinemann, 2nd Edition, Oxford

  • Kobya M, Can OT, Bayramoglu M (2003) Treatment of textile wastewaters by electrocoagulation using iron and aluminum electrodes. J Hazard Mater 100(1):163–178. doi:10.1016/S0304-3894(03)00102-X

    Article  CAS  Google Scholar 

  • Kobya M, Hiz H, Sentur E, Aydiner C, Demirbas E (2006) Treatment of potato chips manufacturing wastewater by electrocoagulation. Desalination 190:201–211. doi:10.1016/j.desal.2005.10.006

    Article  CAS  Google Scholar 

  • Kurt U (2000) Research on treatability of landfill leachates by hydrogen peroxide in the existence of ferric ions. Dissertation in Graduate School of Natural and Applied Sciences, Yildiz Technical University (in Turkish), Istanbul

  • Kurt U, Gonullu MT, Ilhan F, Varinca K (2008) Treatment of domestic wastewater by electrocoagulation in a cell with Fe-Fe electrodes. Environ Eng Sci 25(2):153–162. doi:10.1089/ees.2006.0132

    Article  CAS  Google Scholar 

  • Laginestra M (2014) IWA conference on pre-treatment of water and wastewater. Water: Journal of the Australian Water Association 41(6):40–42

    Google Scholar 

  • Liu L, Liu J, Gao B, Yang F (2012) Minute electric field reduced membrane fouling and improved performance of membrane bioreactor. Sep Purif Technol 86:106–112. doi:10.1016/j.seppur.2011.10.030

    Article  CAS  Google Scholar 

  • Mahmad MKN, Rozainy MRMAZ, Abustan I, Baharun N (2015) Removal of iron and total chromium contaminations in landfill leachate by using electrocoagulation process. Key Eng Mat 660:279–283. doi:10.4028/www.scientific.net/KEM.660.279

    Article  Google Scholar 

  • Mara D, Horan N (2003) Handbook of water and wastewater microbiology. London

  • Mariam T, Nghiem LD (2010) Landfill leachate treatment using hybrid coagulation-nanofiltration processes. Desalination 250(2):677–681. doi:10.1016/j.desal.2009.03.024

    Article  CAS  Google Scholar 

  • Marriaga-Cabrales N, Machuca-Martínez F (2014) Fundamentals of electrocoagulation. Kerala, pp 1–16

  • Merzouk B, Gourich B, Sekki A, Madani K, Chibane M (2009) Removal turbidity and separation of heavy metals using electrocoagulation–electroflotation technique: a case study. J Hazard Mater 164:215–222. doi:10.1016/j.jhazmat.2008.07.144

    Article  CAS  Google Scholar 

  • Mollah MYA, Schennach R, Parga JR, Cocke DL (2001) Electrocoagulation (EC)-science and applications. J Hazard Mater 84(1):29–41. doi:10.1016/S0304-3894(01)00176-5

    Article  CAS  Google Scholar 

  • Sanguanpak S, Chiemchaisri C, Chiemchaisri W, Yamamoto K (2015) Influence of operating pH on biodegradation performance and fouling propensity in membrane bioreactors for landfill leachate treatment. Int Biodeterior Biodegradation 102:64–72. doi:10.1016/j.ibiod.2015.03.024

    Article  CAS  Google Scholar 

  • Sanin D, Clarkson WW, Vesilind PA (2010) Sludge engineering: the treatment and disposal of wastewater sludges. DEStech Publications. Pennsylvania

  • Sekman E, Top S, Uslu E, Varank G, Bilgili MS (2011) Treatment of oily wastewater from port waste reception facilities by electrocoagulation. Int J Environ Res 5(4):1079–1086

    CAS  Google Scholar 

  • Seviour R, Nielsen PH (2010) Microbial ecology of activated sludge. London

  • Shim HY, Lee KS, Lee DS, Jeon DS, Park MS, Shin JS, Lee YK, Goo JW, Kim SB, Chung DY (2014) Application of electrocoagulation and electrolysis on the precipitation of heavy metals and particulate solids in washwater from the soil washing. J Agric Chem Environ 3:130–138. doi:10.4236/jacen.2014.34015

    Google Scholar 

  • Smoczyński L, Muńska KT, Pierożyński B, Kosobucka M (2012) Electrocoagulation of model wastewater using aluminum electrodes. Pol J Chem Technol 14(3):66–70. doi:10.2478/v10026-012-0086-1

    Google Scholar 

  • Sperling MV (2007) Biological wastewater treatment series volume 5. Activated sludge and aerobic biofilm reactors. London

  • Srinivas T (2008) Environmental biotechnology. New Delhi

  • Thapa KB, Qi Y, Hoadley AFA (2009) Interaction of polyelectrolyte with digested sewage sludge and lignite in sludge dewatering. Colloid Surface A 334:66–73. doi:10.1016/j.colsurfa.2008.10.007

    Article  CAS  Google Scholar 

  • Top S, Sekman E, Hosver S, Bilgili MS (2011) Characterization and electrocaogulative treatment of nanofiltration concentrate of a full-scale landfill leachate treatment plant. Desalination 268:158–162. doi:10.1016/j.desal.2010.10.012

    Article  CAS  Google Scholar 

  • Wang G, Fan Z, Wu D, Qin L, Zhang G, Gao C, Meng Q (2014) Anoxic/aerobic granular active carbon assisted MBR integrated with nanofiltration and reverse osmosis for advanced treatment of municipal landfill leachate. Desalination 349:136–144. doi:10.1016/j.desal.2014.06.030

    Article  CAS  Google Scholar 

  • Wisconsin Department of Natural Resources (2010) Introduction to activated sludge study guide. http://dnr.wi.gov/regulations/opcert/documents/wwsgactsludgeintro.pdf. Accessed 18 March 2016

  • Wu J, Chen F, Huang X, Gneg W, Wen X (2006) Using inorganic coagulants to control membrane fouling in a submerged membrane bioreactor. Desalination 197:124–136. doi:10.1016/j.desal.2005.11.026

    Article  CAS  Google Scholar 

  • Yu W, He H, Zhang N (2009) Advances in neural networks—6th International Symposium on Neural Networks, ISNN 2009, Proceedings, Part II. Wuhan. doi:10.1007/978-3-642-01510-6

Download references

Acknowledgements

The financial support from Scientific and Technological Research Council of Turkey (TUBITAK), 1002 Short Term R&D Funding Program Project no: 115Y038 is acknowledged. This study is a part of this project. The authors are also grateful ISTAC Odayeri Solid Waste Landfill Plant for their collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulizar Kurtoglu Akkaya.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akkaya, G.K., Sekman, E., Top, S. et al. Enhancing filterability of activated sludge from landfill leachate treatment plant by applying electrical field ineffective on bacterial life. Environ Sci Pollut Res 24, 10364–10372 (2017). https://doi.org/10.1007/s11356-017-8661-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8661-x

Keywords

Navigation