Skip to main content
Log in

Health status of Pelophylax ridibundus (Amphibia: Ranidae) in a rice paddy ecosystem in Southern Bulgaria and its importance in assessing environmental state: haematological parameters

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Pollution effects on haematological parameters in Pelophylax ridibundus individuals were investigated; animals were collected from two sites in Southern Bulgaria: the Tsalapitsa rice fields (RF) and the Vacha river (reference site, RS). Blood analysis showed significant differences between the haematological parameters of RBC, WBC, Hb, packed cell volume (PCV) and frogs’ leucogram from RF and those from RS. These findings provide information on long-term background pollution of the habitat (RF) under investigation. In our view, the erythropenia, leucopenia, hypоchromia, lower values of PCV, St-neutrophilia, Sg-neutropenia, basopenia, eosinophilia, monocytosis and lymphopenia that were found in Pelophylax ridibundus individuals inhabiting the Tsalapitsa rice fields were probably caused by the pesticides and fertilizers that enter the paddy cages during the rice production process. The present study proves the practical usefulness of haematological parameters of Pelophylax ridibundus individuals in bioindication analyses for environmental assessment of agroecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aliko V., Adiola B., Eldores S., Alketa G (2012) Effects of pollution on amphibian blood parameters (Ranidae: Rana balcanica & Rana lessonae) from the Albania’s coastal zone. International Conference on Marine & Coastal Ecosystems, 25–28 April, Tirana, Albania, pp 1–7

  • Beaupre SB, Jacobson ER, Lillywhite HB, Zamudio K (2004) Guidelines for use of live amphibians and reptiles in field and laboratory research. 2nd revised edition, Lawrence, Kansas, USA: Herpetological Animal Care and Use Committee (HACC), American Society of Ichthyologists and Herpetologists (www.asih.org/files/hacc-final.pdf)

  • Brown B (1980) Hematology: principles and procedures. Lea and Febiger Publishing House, Philadelphia

    Google Scholar 

  • Cabagna MC, Lajmanovich RC, Stringhini GA, Sanchez-Hermandes JC, Peltzer PM (2005) Hematological parameters of health status in the common toad Bufo arenarum in the agroecosystems of Santa Fe province, Argentina. Appl Herpetol 2(4):373–380. https://doi.org/10.1163/157075405774483085

    Article  Google Scholar 

  • Cerny CA, Kaiser HF (1977) A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivariate Behav Res 12(1):43–47. https://doi.org/10.1207/s15327906mbr1201_3

    Article  CAS  Google Scholar 

  • Carvalho CS, Utsunomiya HSM, Pasquoto T, Lima R, Costa MJ, Fernandes MN (2016) Blood cell responses and metallothionein in the liver, kidney and muscles of bullfrog tadpoles, Lithobates catesbeianus, following exposure to different metals. Environ Pollut:1–8. https://doi.org/10.1016/j.envpol.2016.12.012

  • Czech HA, Parsons KC (2002) Agricultural wetlands and waterbirds: a review. Waterbirds 25:56–65

    Article  Google Scholar 

  • Davidson C, Benard M, Shaffer H, Parker J, O'Leary C, Conlon J, Rollins-Smith L (2007) Effects of chytrid and carbaryl exposure on survival, growth and skin peptide defenses in foothill yellow-legged frogs. Environ Sci Technol 41(5):1771–1776. https://doi.org/10.1021/es0611947

    Article  CAS  Google Scholar 

  • Davis AK, Maney DL, Maers JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologist. Funct Ecol 22(5):760–772. https://doi.org/10.1111/j.1365-2435.2008.01467.x

    Article  Google Scholar 

  • Duellman WE, Trueb EL (1994) Biology of Amphibians. John Hopkins University Press, Baltimore

  • Falfushinska H, Loumbourdis N, Romanchuk L, Stolyar O (2008) Validation of oxidative stress responses in two populations of frogs from Western Ukraine. Chemosphere 73(7):1096–1101. https://doi.org/10.1016/j.chemosphere%2008.07.060

    Article  CAS  Google Scholar 

  • Grant EHC, Miller DA, Schmidt BR, Adams MJ, Amburgey SM, Chambert T, Cruickshank SS, Fisher RN, Green DM, Hossack BR (2016) Quantitative evidence for the effects of multiple drivers on continentalscale amphibian declines. Sci Rep 23(6):25625. https://doi.org/10.1038/srep25625

  • Guo R, Zhang W, Ai S, Ren L, Zhang Y (2017) Fluctuating asymmetry rather than oxidative stress in Bufo raddei can be an accurate indicator of environmental pollution induced by heavy metals. Environ Monit Assess 189(6):189–293. https://doi.org/10.1007/s10661-017-5991-6

    Article  Google Scholar 

  • Hayes TB, Falso P, Gallipeau S, Stice M (2010) The cause of global amphibian declines: a developmental endocrinologist’s perspective. J Exp Biol 213(6):921–933. https://doi.org/10.1242/jeb.040865

    Article  CAS  Google Scholar 

  • Hegde G, Krishnamurthy SV (2014) Analysis of health status of the frog Fejervarya limnocharis (Anura: Ranidae) living in rice paddy fields of Western Ghats, using body condition factor and ache content. Ecotoxicol Environ Contam 9(1):69–76

    Google Scholar 

  • Houlahan JE, Findlay CS, Schmidt BR, Meyers AH, Kuzmin SL (2000) Quantitative evidence for global amphibian population declines. Nature 404(6779):752–755. https://doi.org/10.1038/35008052

    Article  CAS  Google Scholar 

  • Jones DK, Hammond JI, Relyea RA (2009) Very highly toxic effects of endosulfan across nine species of tadpoles: lag effects and family level sensitivity. Environ Toxicol Chem 28(9):1939–1945. https://doi.org/10.1897/09-033.1

    Article  CAS  Google Scholar 

  • Mann RM, Hyne RV, Choung CB, Wilson SP (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157(11):2903–2927. https://doi.org/10.1016/j.envpol.2009.05.015

    Article  CAS  Google Scholar 

  • Mineeva OV, Mineev AK (2011) Disorders of blood leukocyte formula in the lake frog of the Saratov reservoir. Bull Univ Nizhny Novgorod 2(2):94–97 (in Russian)

    Google Scholar 

  • Moreira LFB, Knauth DS, Maltchik L (2014) Checklist of amphibians in a rice paddy area in the Uruguayan savanna, southern Brazil. Check List 10(5):1014–1019. https://doi.org/10.15560/10.5.1014

    Article  Google Scholar 

  • Novosad NV, Robeiko MG (2017) Metabolic activity of blood neutrophils frog like (Pelophylax ridibundus). Actual quest biol ecol chem 13(1):73–81 (in Ukrainian)

    Google Scholar 

  • Pallas PS (1771) Reise durch verschiedene Provinzen des Russischen Reichs. Theil 1. Gedruckt bey der Kayserlichen Academie der Wissenschaften, St. Petersbourg, Russia (In German)

  • Рavlov DN, Romanov MG, Vasilev MK, Popov IC (1980) Chemical laboratory methods. Medicine & Physical Culture, Sofia (in Bulgarian)

    Google Scholar 

  • Peltzer PM, Lajmanovich RC, Sa’nchez-Hernandezc JC, Cabagna MC, Attademo AM, Basso A (2008) Effects of agricultural pond eutrophication on survival and health status of Scinax nasicus tadpoles. Ecotoxicol Environ Saf 70(1):185–197. https://doi.org/10.1016/j.ecoenv.2007.06.005

    Article  CAS  Google Scholar 

  • Pérez-Iglesias JM, Soloneski S, Nikoloff N, Natale GS, Larramendy ML (2015) Toxic and genotoxic effects of the imazethapyr-based herbicide formulation Pivot H® on Montevideo tree frog Hypsiboas pulchellus tadpoles (Anura, Hylidae). Ecotoxicol Environ Saf 119:15–24. https://doi.org/10.1016/j.ecoenv.2015.04.045

    Article  Google Scholar 

  • Piatti L, Souza FL, Filho PL (2010) Anuran assemblage in a rice field agroecosystem in the Pantanal of central Brazil. J Nat Hist 44(19):1215–1224. https://doi.org/10.1080/00222930903499804

    Article  Google Scholar 

  • Pollo FE, Bionda CL, Salinas ZA, Salas NE, Martino AL (2015) Common toad Rhinella arenarum (Hensel, 1867) and its importance in assessing environmental health: test of micronuclei and nuclear abnormalities in erythrocytes. Environ Monit Assess 187(9):581. https://doi.org/10.1007/s10661-015-4802-1

    Article  Google Scholar 

  • Pollo FE, Grenat PR, Otero MA, Salas NE, Martino AL (2016) Assessment in situ of genotoxicity in tadpoles and adults of frog Hypsiboas cordobae (Barrio 1965) inhabiting aquatic ecosystems associated to fluorite mine. Ecotoxicol Environ Saf 133:466–474. https://doi.org/10.1016/j.ecoenv.2016.08.003

    Article  CAS  Google Scholar 

  • Pollo FE, Grenat PR, Salinas ZA, Otero MA, Salas NE, Martino AE (2017) Evaluation in situ of genotoxicity and stress in South American common toad Rhinella arenarum in environments related to fluorite mine. Environ Sci Pollut Res 24(22):1–9. https://doi.org/10.1007/s11356-017-9479-2

    Article  Google Scholar 

  • Priyadarshani S, Madhushani WAN, Jayawardena UA, Wickramasinghe DD, Udagama PV (2015) Heavy metal mediated immunomodulation of the Indian green frog Euphlyctis hexadactylus (Anura: Ranidae) in urban wetlands. Ecotoxicol Environ Saf 116:40–49. https://doi.org/10.1016/j.ecoenv.2015.02.037

    Article  CAS  Google Scholar 

  • Ray DK, Mueller ND, West PC, Foley JA (2013) Yield trends are insufficient to double global crop production by 2050. PLoS ONE 8(6):e66428 https://doi.org/10.1371/journal.pone.0066428

  • Relyea RA (2009) A cocktail of contaminants: how mixtures of pesticides at low concentrations affect aquatic communities. Oecologia 159(2):363–376. https://doi.org/10.1007/s00442-008-1213-9

    Article  Google Scholar 

  • Romanova EB, Romanova OY (2003) Peculiarities of leukocytic formula of peripheral blood of green frogs under conditions of anthropogenetic load. J Envol Physiol 39(4):480–484

    Google Scholar 

  • Saber SA, El Salkh BA, Said AS, Said RE, Gadel-Rab AG (2016) Limbs asymmetry as biomarker in the Egyptian toad Amietophrynus regularis exposed to atrazine and nitrates. Int J Ecotoxicol Ecobiol (IJEE) 1(3):103–110. https://doi.org/10.11648/j.ijee.20160103.1

    Google Scholar 

  • Saber S, Tito W, Said R, Mengistou S, Alqahtani A (2017) Amphibians as bioindicators of the health of some wetlands in Ethiopia. Egypt. J Hosp Med 66:66–73

    Google Scholar 

  • Salinas ZA, Salas NE, Baraquet M, Martino AL (2015) Biomarcadores hematológicos del sapo común Bufo (Rhinella) arenarum en ecosistemas alterados de la provincia de Córdoba Hematologic biomarkers of the common toad Bufo arenarum in alteredecosystem of Córdoba province. Acta Toxicol Argent 23(1):25–35 (in Spanish)

    CAS  Google Scholar 

  • Salinas ZA, Baraquet M, Grenat PR, Martino AL, Salas NE (2017) Morphology and size of blood cells of Rhinella arenarum (Hensel, 1867) as environmental health assessment in disturbed aquatic ecosystem from central Argentina. Environ Sci Pollut Res 24(32):24907–24915. https://doi.org/10.1007/s11356-017-0107-y

  • Soloneski S, de Arcaute CR, Larramendy ML (2016) Genotoxic effect of a binary mixture of dicambaand glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867) (Anura, Bufonidae) late-stage larvae. Environ Sci Pollut Res 23(17):17811–17821. https://doi.org/10.1007/s11356-016-6992-7

    Article  CAS  Google Scholar 

  • Stetter MD (2001) Fish and amphibian anaesthesia. Vet Clin North Ame Exot Anim Pract 4(1):69–82. https://doi.org/10.1016/S1094-9194(17)30052-X

    Article  CAS  Google Scholar 

  • Stuart SN, Chanson JS, Cox NA, Young BE, Rodrigues AS, Fischman DL, Waller RW (2004) Status and trend of amphibians declines and extinctions worldwide. Science 306(5702):1783–1786. https://doi.org/10.1126/science.1103538

    Article  CAS  Google Scholar 

  • Teixeira PC, Dias DC, Rocha GC, Antonucci AM, França FM, Marcantonio AS, Ranzani-Paiva MJT, Ferreira CM (2012) Profile of cortisol, glycaemia, and blood parameters of American bullfrog tadpoles Lithobates catesbeianus exposed to density and hypoxia stressors. Pesqui Vet Bras 32(Supl 1):91–98

    Article  Google Scholar 

  • Thammachoti P, Khonsue W, Kitana J, Varanusupakul P (2012) Morphometric and gravimetric parameters of the rise frog Fejervarya limnocharis living in areas with different agricultural activity. J Environ Prot 3(10):1403–1408. https://doi.org/10.4236/jep.2012.310159

    Article  Google Scholar 

  • Venturino A, Rosenbaum E, Caballero de Castro A, Anguiano OL, Gauna L, Fonovich de Schroeder T, Pechen de D'Angelo AM (2003) Biomarkers of effect in toads and frogs. Biomarkers 8(3-4):167–186. https://doi.org/10.1080/1354700031000120116

    Article  CAS  Google Scholar 

  • Whittaker K, Koo MS, Wake DB, Vredenburg VT (2013) Global declines of amphibians. In: Levin SA (ed) Encyclopedia of biodiversity, second edition. Waltham: Academic Press, pp. 691–699, DOI: https://doi.org/10.1016/B978-0-12-384719-5.00266-5

  • Zhelev ZM, Popgeorgiev GS, Angelov MV (2013) Investigating the changes in the morphological content of the blood of Pelophylax ridibundus (Amphibia: Ranidae) as a result of anthropogenic pollution and its use as an environmental bioindicator. Acta Zool Bulg 65(2):187–196

    Google Scholar 

  • Zhelev ZM, Popgeorgiev GS, Mehterov NH (2014) Changes in the basic morphophysiological parameters in the populations of Pelophylax ridibundus (Amphibia: Ranidae) from anthropogenically polluted habitats in Southern Bulgaria. Part 1. Bulg J Agr Sci 20(5):1202–1210

    Google Scholar 

  • Zhelev ZM, Popgeorgiev GS, Mehterov NH (2015) Changes in the hepatosomatic index and condition factor in the populations of Pelophylax ridibundus (Amphibia: Ranidae) from anthropogenically polluted habitats in Southern Bulgaria. Part II. Bulg J Agr Sci 21:534–539

    Google Scholar 

  • Zhelev Z, Popgeorgiev G, Ivanov I, Boyadzhiev P (2017b) Changes of erythrocyte-metric parameters in Pelophylax ridibundus (Amphibia: Anura: Ranidae) inhabiting water bodies with different types of anthropogenic pollution in Southern Bulgaria. Environ Sci Pollut Res 24(21):17920–17934. https://doi.org/10.1007/s11356-017-9364-z

    Article  Google Scholar 

  • Zhelev ZM, Tsonev CV, Arnaudova DN (2017a) Health status of Pelophylax ridibundus (Pallas, 1771) (Amphibia: Ranidae) in a rice paddy ecosystem in southern Bulgaria: body condition factor and fluctuating asymmetry. Acta Zool Bulg 69(Suppl 8):169–177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhivko Zhelev.

Ethics declarations

According to clause number 42, clause number 41 and appendix 2 to the clause number 41 of the Bulgarian Law on Biological Diversity, capture permits for P. ridibundus are not required for the aims of scientific research. The Ethics Board for Experimental Animals at the Faculty of Biology at the University of Plovdiv approved the animal handling and the laboratory methodology. Manipulations were done in line with the ethical standards for research work with live animals, 1 day after the capture of the animals (actually less than 24 h after the catch) in laboratory conditions.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhelev, Z., Tsonev, S., Georgieva, K. et al. Health status of Pelophylax ridibundus (Amphibia: Ranidae) in a rice paddy ecosystem in Southern Bulgaria and its importance in assessing environmental state: haematological parameters. Environ Sci Pollut Res 25, 7884–7895 (2018). https://doi.org/10.1007/s11356-017-1109-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-1109-5

Keywords

Navigation