Skip to main content

Advertisement

Log in

Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Aerobic denitrifiers coupled with a denitrification agent were applied in the sediment of an urban river for the bioremediation of nitrogen pollution. The results revealed that 14.7% of the total nitrogen in the sediment was removed after 115 days of treatment and the nitrate nitrogen concentration removal rate was enhanced in the overlying water. Compared with the control, the total transferable nitrogen in the sediment increased from 0.097 to 0.166 mg/g, indicating that more nitrogen is likely to be involved in the biogeochemical cycling of nitrogen. Increased urease activity indicated the possible further potential of nitrogen biodegradation, while the decreased protease pointed to the low concentration of protein remaining in the sediment. Sequencing revealed that the bacterial community diversity in the sediment increased significantly after 43 days of treatment and that the effect persisted. Compared with other microcosms, the dominant phyla in the sediment after 43 days were Firmicutes, Elusimicrobia, Spirochaetae and Fibrobacteres; whereas, after 115 of treatment, the dominant bacteria were Nitrospirae, Deferribacteres and Chloroflexi. The dominant bacteria in the sediment are mainly associated with nitrogen cycling and thus contributed considerably to nitrogen removal in the sediment. Overall, the direction of species succession was similar to natural succession; namely, there were no undesirable ecological risks involved. This study highlights the possible benefits and feasibility of using bioaugmentation technology coupled with biostimulation to remediate nitrogen-polluted sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Burns RG, Forest JLD, Marxsen J, Sinsabaugh RL, Stromberger ME, Wallenstein MD, Weintraub MN, Zoppini A (2013) Soil enzymes in a changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234. https://doi.org/10.1016/j.soilbio.2012.11.009

    Article  CAS  Google Scholar 

  • Camargo JA, Alonso A (2006) Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: a global assessment. Environ Int 32(6):831–849. https://doi.org/10.1016/j.envint.2006.05.002

    Article  CAS  Google Scholar 

  • Chang BV, Yuan SY, Ren YL (2012) Aerobic degradation of tetrabromobisphenol-a by microbes in river sediment. Chemosphere 87(5):535–541. https://doi.org/10.1016/j.chemosphere.2011.12.057

    Article  CAS  Google Scholar 

  • Chen F, Ke Z, Zhou J, Yang J, Peng W (2007) Control of Lake Eutrophication by compound bacterium. China. Environ Sci Technol 30(5):29–32

    Google Scholar 

  • Chen Q, Ni J, Ma T, Liu T, Zheng M (2015) Bioaugmentation treatment of municipal wastewater with heterotrophic-aerobic nitrogen removal bacteria in a pilot-scale SBR. Bioresour Technol 183:25–32. https://doi.org/10.1016/j.biortech.2015.02.022

    Article  CAS  Google Scholar 

  • Chen C, Xu X, Xie P, Yuan Y, Zhou X, Wang A, Lee D, Ren N (2017) Pyrosequencing reveals microbial community dynamics in integrated simultaneous desulfurization and denitrification process at different influent nitrate concentrations. Chemosphere 171:294–301. https://doi.org/10.1016/j.chemosphere.2016.11.159

    Article  CAS  Google Scholar 

  • Dick RP (1994) Soil enzyme activities as indicators of soil quality. Soil Sci Soc Am J 58:107–124

    Google Scholar 

  • Farhadian M, Vachelard C, Duchez D, Larroche C (2008) In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol 99(13):5296–5308. https://doi.org/10.1016/j.biortech.2007.10.025

    Article  CAS  Google Scholar 

  • Garcia-Blanco S, Venosa AD, Suidan MT, Lee K, Cobanli S, Haines JR (2007) Biostimulation for the treatment of an oil-contaminated coastal salt marsh. Biodegradation 18(1):1–15. https://doi.org/10.1007/s10532-005-9029-3

    Article  CAS  Google Scholar 

  • Gittel A, Kofoed MVW, Sorensen KB, Ingvorsen K, Schramm A (2012) Succession of Deferribacteres and Epsilonproteobacteria through a nitrate-treated high-temperature oil production facility. Syst Appl Microbiol 35(3):165–174. https://doi.org/10.1016/j.syapm.2012.01.003

    Article  CAS  Google Scholar 

  • Guan S (1986) Soil enzyme and its research methods, 1st edn. China Agriculture Press, Beijing

    Google Scholar 

  • Guo L, Chen Q, Fang F, Hu Z, Wu J, Miao A, Xiao L, Chen X, Yang L (2013) Application potential of a newly isolated indigenous aerobic denitrifier for nitrate and ammonium removal of eutrophic lake water. Bioresour Technol 142(4):45–51. https://doi.org/10.1016/j.biortech.2013.05.021

    Article  CAS  Google Scholar 

  • He T, Guan W, Luan Z, Xie S (2016) Spatiotemporal variation of bacterial and archaeal communities in a pilot-scale constructed wetland for surface water treatment. Appl Microbiol Biotechnol 100:479–1488

    Article  Google Scholar 

  • Herlemann DPR, Geissinger O, Ikeda-Ohtsubo W, Kunin V, Sun H, Lapidus A, Hugenholtz P, Brune A (2009) Genomic analysis of “Elusimicrobium minutum,” the first cultivated representative of the phylum “Elusimicrobia”. Appl Environ Microbiol 75(9):2841–2849. https://doi.org/10.1128/AEM.02698-08

    Article  CAS  Google Scholar 

  • Huang C, Shi Y, El-Din MG, Liu Y (2016) Optimization of ozonation combined with integrated fixed-film activated sludge (IFAS) in the treatment of oil sands process-affected water (OSPW). Int Biodeterior Biodegrad 112:31–41. https://doi.org/10.1016/j.ibiod.2016.04.037

    Article  CAS  Google Scholar 

  • Jiang X, Wang W, Wang S, Jin X (2012) Calculation of environmental dredging depth of heavy metal polluted sediments in Zhushan Bay of Taihu Lake. Environ Sci 33(4):1189–1197

    Google Scholar 

  • Jiao Y, Zhao Q, Jin W, Hao X, You S (2011) Bioaugmentation of a biological contact oxidation ditch with indigenous nitrifying bacteria for in situ remediation of nitrogen-rich stream water. Bioresour Technol 102(2):990–995. https://doi.org/10.1016/j.biortech.2010.09.061

    Article  CAS  Google Scholar 

  • Kampmann K, Ratering S, Kramer I, Schmidt M, Zerr W, Schnell S (2012) Unexpected stability of Bacteroidetes and Firmicutes communities in laboratory biogas reactors fed with different defined substrates. Appl Environ Microbiol 78(7):2106–2119. https://doi.org/10.1128/AEM.06394-11

    Article  CAS  Google Scholar 

  • Knowles R (1982) Denitrification. Microbiol Rev 46(1):43–70

    CAS  Google Scholar 

  • Lang FS, Destain J, Delvigne F, Druart P, Ongena M, Thonart P (2016) Biodegradation of polycyclic aromatic hydrocarbons in mangrove sediments under different strategies: natural attenuation, biostimulation, and bioaugmentation with Rhodococcus erythropolis T902.1. Water Air Soil Pollut 227(9):297. https://doi.org/10.1007/s11270-016-2999-4

    Article  Google Scholar 

  • Lee S, Park J, Kang H, Lee Y, Lee T, Park H (2013) Distribution and abundance of Spirochaetes in full-scale anaerobic digesters. Bioresour Technol 145:25–32. https://doi.org/10.1016/j.biortech.2013.02.070

    Article  CAS  Google Scholar 

  • Li D, Huang Y, Li W (2007) Study on remediation of city river water body by technology of aerating sediments. China Water Wastewater 23(5):22–25

    CAS  Google Scholar 

  • Li X, Wu S, Shen Y, Ning Y, Zhang X, Sun X, Zhang B, Chen J (2015) Heterotrophic nitrification and aerobic denitrification by four novel isolated bacteria. Pol J Environ Stud 24(4):1677–1682. https://doi.org/10.15244/pjoes/35392

    Article  CAS  Google Scholar 

  • Lin X (2010) Soil microbial research principles and methods, 1st edn. Higher Education Press, Beijing

    Google Scholar 

  • Liu J, Zhang S, Yang Z, He L, Zhou N, Zhang Q (2015) Effect of drought and subsequent re-wetting cycles on transferable nitrogen and its form distribution in the sediment of water level fluctuating zone in the tributary of three gorge reservoir areas. Environ Sci 36(7):2459–2464

    Google Scholar 

  • Lv M (2016) Effect and mechanism of chemical and biological collaborative remediation to river sediment. Dissertation, Tianjin University

  • Lv X, Song J, Yuan H, Li X, Zhan T, Li N, Gao X (2004) The potential ecological roles of nitrogen in the surface sediments of the South Yellow Sea. Acta Ecol Sin 24(8):1635–1643

    Google Scholar 

  • Ma H, Song J, Lv X (2002) Nitrogen forms and decomposition of organic carbon in the southern Bohai Sea core sediments. Acta Oceanol Sin 24(5):64–70

    CAS  Google Scholar 

  • Miura Y, Watanabe Y, Okabe S (2007) Significance of Chloroflexi in performance of submerged membrane bioreactors (MBR) treating municipal wastewater. Environ Sci Technol 41(22):7787–7794. https://doi.org/10.1021/es071263x

    Article  CAS  Google Scholar 

  • Moreno JL, Garcia C, Hernandez T (2003) Toxic effect of cadmium and nickel on soil enzymes and the influence of adding sewage sludge. Eur J Soil Sci 54(2):377–386. https://doi.org/10.1046/j.1365-2389.2003.00533.x

    Article  CAS  Google Scholar 

  • Morgante V, López-López A, Flores C, González M, González B, Vásquez M, Rosselló-Mora R, Seeger M (2010) Bioaugmentation with Pseudomonas sp. strain MHP41 promotes simazine attenuation and bacterial community changes in agricultural soils. FEMS Microbiol Ecol 72(1):152–152. https://doi.org/10.1111/j.1574-6941.2010.00834.x

    Article  CAS  Google Scholar 

  • National Environment Protection Agency of China (NEPAC) (2002) Standard analysis methods for the examination of water and wastewater, 4th version. Chinese Environmental Science Press, Beijing

    Google Scholar 

  • Pai S, Chong N, Chen C (1999) Potential applications of aerobic denitrifying bacteria as bioagents in wastewater treatment. Bioresour Technol 68(2):179–185. https://doi.org/10.1016/S0960-8524(98)00140-0

    Article  CAS  Google Scholar 

  • Pan Q, Luo Z, Qiu Z, Yan C (2011) Distribution characteristics of nitrogen forms in surface sediments of Jiulongjiang Estuary Wetland. Res Environ Sci 24(6):673–678

    CAS  Google Scholar 

  • Park J, Krumins V, Kjellerup BV, Fennell DE, Rodenburg LA, Sowers KR, Kerkhof LJ, Haggblom MM (2011) The effect of co-substrate activation on indigenous and bioaugmented PCB dechlorinating bacterial communities in sediment microcosms. Appl Microbiol Biotechnol 89(6):2005–2017. https://doi.org/10.1007/s00253-010-2958-8

    Article  CAS  Google Scholar 

  • Pei L, Peng D, Wei J, Wang B, Zhang X, Yu L (2014) Nitrogen removal from an AAO pilot plant with nitrifier bioaugmentation after seasonal deterioration. Desalin Water Treat 55(6):1–8

    Google Scholar 

  • Pourabadehei M, Mulligan CN (2016) Resuspension of sediment, a new approach for remediation of contaminated sediment. Environ Pollut 213:63–75. https://doi.org/10.1016/j.envpol.2016.01.082

    Article  CAS  Google Scholar 

  • Ransom-Jones E, Jones DL, Edwards A, Donald JEM (2014) Distribution and diversity of members of the bacterial phylum Fibrobacteres in environments where cellulose degradation occurs. Syst Appl Microbiol 37(7):502–509. https://doi.org/10.1016/j.syapm.2014.06.001

    Article  CAS  Google Scholar 

  • Reynolds CM, Wolf DC, Armbruster JA (1985) Factors related to urea hydrolysis in soils. Soil Sci Soc Am J 49(1):104–108. https://doi.org/10.2136/sssaj1985.03615995004900010021x

    Article  CAS  Google Scholar 

  • Robertson LA, Kuenen JG (1983) Thiosphaera pantotropha gen. nov. sp. nov., a facultatively anaerobic, facultatively autotrophic sulphur bacterium. J Gen Microbiol 129(9):2847–2855

    CAS  Google Scholar 

  • Sarnaik SS, Phalke VV, Kanekar PP (2015) Removal of ammoniacal nitrogen from fish processing wastewater using bioaugmentation technique. Int J Pharm Bio Sci 6(1):1021–1029

    CAS  Google Scholar 

  • SØndergaard M, Jeppesen E, Lauridsen TL, Skov C, Nes EHV, Roijackers R, Lammens E, Portielje R (2007) Lake restoration: successes, failures and long-term effects. J Appl Ecol 44(6):1095–1105. https://doi.org/10.1111/j.1365-2664.2007.01363.x

    Article  Google Scholar 

  • Standardization Administration of China (SAC) (2009) Water quality—determination of total organic carbon-combustion oxidation nondispersive infrared absorption method. Standards press of china, Beijing

    Google Scholar 

  • Standardization Administration of China (SAC) (2014) Method for the determination of soli total nitrogen (modified Kjeldahl method). Standards press of china, Beijing

    Google Scholar 

  • Subha B, Song YC, Woo JH (2017) Bioremediation of contaminated coastal sediment: optimization of slow release biostimulant ball using response surface methodology (RSM) and stabilization of metals from contaminated sediment. Mar Pollut Bull 114(1):285–295. https://doi.org/10.1016/j.marpolbul.2016.09.034

    Article  CAS  Google Scholar 

  • Sun L, Feng C, Liu Y, Jin H (2009) Nitrogen removal from Pearl River by enhanced ecological floating bed system. Acta Sci Nat Univ Sunyatseni 48(1):93–97

    CAS  Google Scholar 

  • Tyagi M, Fonseca MMRD, Carvalho CCCRD (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22(2):231–241. https://doi.org/10.1007/s10532-010-9394-4

    Article  CAS  Google Scholar 

  • Wang X (2011) Biochemical collaborative remediation and optimization of polluted sediment. Dissertation, Tianjin University

  • Wang S (2013) Sediment-water interface process of lakes: nitrogen and phosphorus biogeochemistry, 1st edn. Science Press, Beijing

    Google Scholar 

  • Wang S, Jin X, Jiao L, Wu F (2008) Nitrogen fractions and release in the sediments from the shallow lakes in the middle and lower reaches of the Yangtze River area, China. Water Air Soil Pollut 187:5–14

    Article  CAS  Google Scholar 

  • Wang M, Liu Y, Zheng B, Zhou J, Jiang Q (2014) Nitrogen forms in surface sediments of urban river and their influence factors: a case study of Qingyi River in Xuchang City. China Environ Sci 34(3):720–726

    Google Scholar 

  • Wilczek S, Fischer H, Pusch MT (2004) Regulation and seasonal dynamics of extracellular enzyme activities in the sediments of a large lowland river. Microb Ecol 50:253–267

    Article  Google Scholar 

  • Xiong J, Li G, An T (2017) The microbial degradation of 2,4,6-tribromophenol (TBP) in water/sediments interface: investigating bioaugmentation using Bacillus sp. GZT. Sci Total Environ 575:573–580. https://doi.org/10.1016/j.scitotenv.2016.09.017

    Article  CAS  Google Scholar 

  • Yang L, Lin F, Xu Z, Zhang M, Gao Y (2007) Effect of temperature on the activities of microorganism and the pollutants release in the bioremediation of the sediment. Environ Pollut Cont 29(1):22–29

    CAS  Google Scholar 

  • Zhang B, Chen Y, Fang F, Li Z, Guo J, Wang Z (2012a) Nitrogen forms and their distribution characteristics in the soils of water-level—luctuationg zone in the central Three Gorges Reservoir. Acta Sci Circumst 32(5):1126–1133

    Google Scholar 

  • Zhang Q, Liu Y, Ai G, Miao L, Zheng H, Liu Z (2012b) The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour Technol 108:35–44. https://doi.org/10.1016/j.biortech.2011.12.139

    Article  CAS  Google Scholar 

  • Zheng H, Dietrich C, Radek R, Brune A (2016) Endomicrobium proavitum, the first isolate of Endomicrobia class. nov. (phylum Elusimicrobia)—an ultramicrobacterium with an unusual cell cycle that fixes nitrogen with a group IV nitrogenase. Environ Microbiol 18(1):191–204. https://doi.org/10.1111/1462-2920.12960

    Article  CAS  Google Scholar 

  • Zhou S, Huang T, Ngo HH, Zhang H, Liu F, Zeng M, Shi J, Qiu X (2016) Nitrogen removal characteristics of indigenous aerobic denitrifiers and changes in the microbial community of a reservoir enclosure system via in situ oxygen enhancement using water lifting and aeration technology. Bioresour Technol 214:63–73. https://doi.org/10.1016/j.biortech.2016.04.071

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National Nature Science Foundation of China (51378339) and Ministry of Water Resources’ special funds for scientific research on public causes (201401047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingmei Sun.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

Fig. S1

Heterotrophic nitrification and aerobic denitrification abilities of aerobic denitrifiers under aeration condition. a Ability of aerobic denitrification. b Ability of heterotrophic nitrification. (PDF 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Y., Li, M., Xu, D. et al. Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment. Environ Sci Pollut Res 25, 5980–5993 (2018). https://doi.org/10.1007/s11356-017-0903-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0903-4

Keywords

Navigation