Skip to main content
Log in

Hydraulic connection affects uranium distribution in the Gas Hure salt lake, Qaidam Basin, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The widespread hydraulic connection is necessary for the formation of a salt lake. However, only limited studies have ever been carried out to investigate the influence of the hydraulic connection on the distribution of elements around certain salt lake. In this study, a total of 66 water samples (including river water, stream water, spring water, brine, intercrystalline brine, well water, and drilling brine) were collected around the Gas Hure salt lake (GSKLH) to investigate the relationship between hydraulic connection and uranium (U) distribution via hydrochemistry and isotope (234U/238U, δ11B) techniques. The results suggested that the GSKLH was recharged by water from the Kulamulekesay and Atetikan rivers, groundwater (borehole brine and some intercrystalline brine), and deep fluid (some intercrystalline brine), with each contributing 44.03%, 14.95%, and 41.02% of total recharge, respectively. The U-bearing rock was dominated mainly by silicates, carbonates, and evaporites in the high mountain area (region 1), overflow area (region 2), and plain area (region 3) of the GSKLH, respectively. In the GSKLH, the U distribution was strongly correlated with hydraulic connection and the U concentration was influenced by both groundwater flow system and flow velocity (represented by the γCl/γCa2+ ratio). Thus, U was enriched under the conditions of regional groundwater flow system and slow velocity in the GSKLH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amiri V, Nakhaei M, Lak R, Kholghi M (2016) Geophysical, isotopic, and hydro geochemical tools to identify potential impacts on coastal groundwater resources from Urmia hypersaline Lake, NW Iran. Environ Sci Pollut Res 23(16):16738–16760. https://doi.org/10.1007/s11356-016-6859-y

    Article  CAS  Google Scholar 

  • Ammar FH, Chkir N, Zouari K, Zohra AB (2010) Uranium isotopes in groundwater from the “Jeffara coastal aquifer” (southeastern Tunisia). J Environ Radioact 101(9):681–691. https://doi.org/10.1016/j.jenvrad.2010.04.007

    Article  Google Scholar 

  • Chen XC, Li QR (2001) Analysis of hydrogeochemical conditions of uranium metallogenesis in northwestern Qaidam Basin. Uranium Geology 17(6):348–353. (in Chinese with English Abstract)

  • Chen J, Wang H (2004) Geochemistry. Scientific Publishing House, Beijing 418 pp. (in Chinese)

    Google Scholar 

  • Cheng X, Fu ST, Wang HF, Yu XJ, Cheng F, Liu RC, Du W, Guo ZJ (2015) Geometry and kinematics of the Arlar strike-slip fault, SW Qaidam basin, China: New insights from 3-D seismic data. J Asia Earth Sci 98:198–208

  • Davis JA, Curtis GP, Wilkins MJ, Kohler M, Fox P, Naftz DL, Lloyd JR (2006) Processes affecting transport of uranium in a suboxic aquifer. Phys Chem Earth 31(10–14):548–555. https://doi.org/10.1016/j.pce.2006.04.005

    Article  Google Scholar 

  • Fan QS, Ma YQ, Cheng HD, Wei HC, Yuan Q, Qin ZJ, Shan FS (2015) Boron occurrence in halite and boron isotope geochemistry of halite in the Qarhan Salt Lake, western China. Sediment Geol 322:34–42. https://doi.org/10.1016/j.sedgeo.2015.03.012

    Article  CAS  Google Scholar 

  • Farber E, Vengosh A, Gavrieli I, Marie A, Bullen TD, Mayer B, Polak A, Shavit U (2007) The geochemistry of groundwater resources in the Jordan Valley: the impact of the Rift Valley brines. Appl Geochem 22(3):494–514. https://doi.org/10.1016/j.apgeochem.2006.12.002

    Article  CAS  Google Scholar 

  • Gu WZ, Pang ZH, Wang JQ, Song XF (2011) Istope hydrology. Science Press, Beijing 1092 pp. (in Chinese)

    Google Scholar 

  • Huang Q, Han FQ (2007) Evolution of salt lakes and palaeoclimate fluctuation in Qaidam Basin. Science Press, Beijing, pp 207. (in Chinese)

  • Jiang XY, ZG Y, TL K, Kang XL, Wei W, Chen HT (2009) Distribution of uranium isotopes in the main channel of yellow river (Huanghe), China. Cont Shelf Res 29(4):719–727. https://doi.org/10.1016/j.csr.2008.12.004

    Article  Google Scholar 

  • Kipp GG, Stone JJ, Stetler LD (2009) Arsenic and uranium transport in sediments near abandoned uranium mines in Harding County, South Dakota. Appl Geochem 24(12):2246–2255. https://doi.org/10.1016/j.apgeochem.2009.09.017

    Article  CAS  Google Scholar 

  • Lehr C, Poeschke F, Lewandowski J, Lischeid G (2015) A novel method to evaluate the effect of a stream restoration on the spatial pattern of hydralic connection of stream and groundwater. J Hydrol 527:394–401. https://doi.org/10.1016/j.jhydrol.2015.04.075

    Article  CAS  Google Scholar 

  • Li D, Li X, Wang X (2013) The regional geological survey of the People's Republic of China (Ayak kumu lake area, 1:250000). (in Chinese)

  • Louvat P, Gayer E, Gaillardet J (2014) Boron behavior in the rivers of Réunion island, inferred from boron isotope ratios and concentrations of major and trace elements. Procedia Earth and Planetary Science 10:231–237

    Article  CAS  Google Scholar 

  • Lowenstein TK, Risacher F, Lerman A (2009) Closed basin evolution and the influence of Ca-Cl inflow water: Death Valley and Bristol Dry Lake California, Qaidam Basin, China, and Salar de Atacama, Chile. Aquat Geochem 15(1–2):71–94. https://doi.org/10.1007/s10498-008-9046-z

    Article  CAS  Google Scholar 

  • Merkel BJ, Planer-Friedrich B, Nordstrom DK (2008) Groundwater geochemistry: a practical guide to modeling of natural and contaminated aquatic systems. Springer, Berlin 230 pp

    Google Scholar 

  • Min MZ, Peng XJ, Zhou XL, Qiao HM, Wang JP, Zhang L (2007) Hydrochemistry and isotope compositions of groundwater from the Shihongtan sandstone-hosted uranium deposit, Xinjiang, NW China. J Geochem Explor 93(2):91–108. https://doi.org/10.1016/j.gexplo.2006.12.001

    Article  CAS  Google Scholar 

  • Nigro A, Sappa G, Barbieri M (2017) Application of boron and tritium isotopes for tracing landfill contamination in groundwater. J Geochem Explor 172:101–108. https://doi.org/10.1016/j.gexplo.2016.10.011

    Article  CAS  Google Scholar 

  • Osmond JK, Cowart JB, Ivanovich M (1983) Uranium isotopic disequilibrium in ground water as an indicator of anomalies. International Journal of Applied Radiation & Isotopes 34(1):283–308. https://doi.org/10.1016/0020-708X(83)90132-1

    Article  CAS  Google Scholar 

  • Osmond JK, Kaufman MI, Cowart JB (1974) Mixing volume calculations, sources and aging trends of Floridan aquifer water by uranium isotopic methods. Geochim Cosmochim Acta 38:1088–1100

    Article  Google Scholar 

  • Osmond JK, Rydell HS, Kaufman MI (1968) Uranium disequilibrium in groundwater: an isotope dilution approach in hydrologic investigations. Science 3857(162):997–999

    Article  Google Scholar 

  • Otz MH, Otz HK, Otz I, Siegel DI (2003) Surface water/groundwater interaction in the Piora aquifer, Switzerland: evidence from dye tracing tests. Hydrogeol J 11(2):228–239. https://doi.org/10.1007/s10040-002-0237-1

    Article  CAS  Google Scholar 

  • Richard SK, Chesnaux R, Rouleau A, Morin R, Walter J, Rafini S (2014) Field evidence of hydraulic connections between bedrock aquifers and overlying granular aquifers: examples from the Grenville Province of the Canadian Shield. Hydrogeol J 22(8):1889–1904. https://doi.org/10.1007/s10040-014-1183-4

    Article  CAS  Google Scholar 

  • Roback RC, Johnason TM, McLing TL (2001) Uranium isotopic evidence for groundwater chemical evolution and flow patterns in the eastern Snake River Plain aquifer, Idaho. Geol Soc Am Bull 113:1133–1141. https://doi.org/10.1130/0016-7606(2001)113<1133:UIEFGC>2.0.CO;2

    Article  CAS  Google Scholar 

  • Rong GZ, Tian XB, Li YP, Jia CC (2003) Potash detailed survey report in the Gas Hure salt lake, Qaidam basin. Qinghai Geological Survey Institute, Qinghai 164 pp (in Chinese)

    Google Scholar 

  • Ryu JS, Lee KS, Chang HW (2007) Hydrogeochemical and isotopic investigations of the Han River basin, South Korea. J Hydrol 345(1–2):50–60. https://doi.org/10.1016/j.jhydrol.2007.08.001

    Article  Google Scholar 

  • Ryu JS, Lee KS, Chang HW, Cheong CS (2009) Uranium isotopes as a tracer of sources of dissolved solutes in the Han River, South Korea. Chem Geol 258(3–4):354–361. https://doi.org/10.1016/j.chemgeo.2008.10.039

    Article  CAS  Google Scholar 

  • Ryu JS, Lee KS, Chang HW, Shin HS (2008) Chemical weathering of carbonates and silicates in the Han River basin, South Korea. Chem Geol 247(1–2):66–80. https://doi.org/10.1016/j.chemgeo.2007.09.011

    Article  CAS  Google Scholar 

  • Schöner A, Noubactep C, Büchel G, Sauter M (2009) Geochemistry of natural wetlands in former uranium milling sites (eastern Germany) and implications for uranium retention. Chemie der Erde - Geochemistry 69:91–107. https://doi.org/10.1016/j.chemer.2007.12.003

    Article  Google Scholar 

  • Shen ZL, Liu GY, Yang CT, Sun SX, Chen BR (1985) Hydrogeology. Scientific Publishing House, Beijing 863 pp. (in Chinese)

    Google Scholar 

  • Shi WJ (1990) Hydrochemical theory of uranium. Atomic Energy Press, Beijing 440 pp. (in Chinese)

  • Singh RV, Sinha RM, Bisht BS, Banerjee DC (2002) Hydrogeochemical exploration for unconformity-related uranium mineralization: example from Palnadu sub-basin, Cuddapah Basin, Andhra Pradesh, India. J Geochem Explor 76(2):71–92. https://doi.org/10.1016/S0375-6742(02)00218-2

    Article  CAS  Google Scholar 

  • Suksi J, Rasilainen K, Casanova J, Ruskeeniemi T, Blomqvist R, Smellie JAT (2001) U-series disequilibria in groundwater flow route as an indicator of uranium migration processes. J Contam Hydrol 47(2–4):187–196. https://doi.org/10.1016/S0169-7722(00)00148-0

    Article  CAS  Google Scholar 

  • Sun YQ, Qian H, XH W (2007) Hydro geochemical characteristics of groundwater depression cones in Yinchuan City, Northwest China. Chin J Geochem 26(4):350–355. https://doi.org/10.1007/s11631-007-0350-x

    Article  CAS  Google Scholar 

  • Tan HB, Chen J, Rao WB, Zhang WJ, Zhou HF (2012) Geothermal constraints on enrichment of boron and lithium in salt lakes: an example from a river-salt lake system on the northern slope of the eastern Kunlun Mountains, China. J Asian Earth Sci 51:21–29. https://doi.org/10.1016/j.jseaes.2012.03.002

    Article  Google Scholar 

  • Vengosh A, Starinsky A, Kolodny Y, Chivas AR (1991) Boron isotope geochemistry as a tracer for the evollution of brines and associated hot-springs from the Dead sea, Israel. Geochimical et Cosmochimica Acta 55(6):1689–1695. https://doi.org/10.1016/0016-7037(91)90139-V

    Article  CAS  Google Scholar 

  • Vengosh A, Starinsky A, Kolodny Y, Chivas AR, Raab M (1992) Boron isotope variations during fractional evaporation of sea-water new constraints on the marine and nonmarine debate. Geology 20(9):799–802. https://doi.org/10.1130/0091-7613(1992)020<0799:BIVDFE>2.3.CO;2

    Article  CAS  Google Scholar 

  • Von Strandmann PP, Burton KW, James RH, van Calsteren P, Gislason SR (2010) Assessing the role of climate on uranium and lithium isotope behaviour in rivers draining a basaltic terrain. Chem Geol 270(1–4):227–239. https://doi.org/10.1016/j.chemgeo.2009.12.002

    Article  Google Scholar 

  • Wang XY, Ni SJ, Shi ZM (2014) Uranium distribution in the sediment of the Mianyuan River near a phosphate mining region in China and the related uranium speciation in water. Chemie der Erde-Geochemistry 74(4):661–669. https://doi.org/10.1016/j.chemer.2014.03.001

    Article  CAS  Google Scholar 

  • Wang Y, Xiao P, Pan C (2013) The regional geological survey of the People’s Republic of China (A Wushijie Area, 1:250000)

  • Warner NR, Jackson RB, Darrah TH, Osborn SG, Down A, Zhao KG, White A, Vengosh A (2012) Geochemical evidence for possible natural migration of Marcellus Formation brine to shallow aquifers in Pennsylvania. Proc Natl Acad Sci U S A 109(30):11961–11966. https://doi.org/10.1073/pnas.1121181109

    Article  CAS  Google Scholar 

  • Wei HZ, Jiang SY, Tan HB, Zhang WJ, Li BK, Yang TL (2014) Boron isotope geochemistry of salt sediments from the Dongtai salt lake in Qaidam Basin: boron budget and sources. Chem Geol 380:74–83. https://doi.org/10.1016/j.chemgeo.2014.04.026

    Article  CAS  Google Scholar 

  • Wu WH, Xu SJ, Yang JD, Yin HW (2008) Silicate weathering and CO2 consumption deduced from the seven Chinese rivers originating in the Qinghai-Tibet Plateau. Chem Geol 249(3–4):307–320

    Article  CAS  Google Scholar 

  • Wu Y, Wang YX, Xie XJ (2014) Occurrence, behavior and distribution of high levels of uranium in shallow groundwater at Datong basin, northern China. Sci Total Environ 472:809–817. https://doi.org/10.1016/j.scitotenv.2013.11.109

    Article  CAS  Google Scholar 

  • Xiao J, Xiao YK, Jin ZD, He MY, Liu CQ (2013) Boron isotope variations and its geochemical application in nature. Aust J Earth Sci 60(4):431–447. https://doi.org/10.1080/08120099.2013.813585

    Article  CAS  Google Scholar 

  • Xiao YK, Yin DZ, Liu WG, Wang QZ, Wei HZ (2001) Boron isotope method for study of seawater intrusion. Science in China series E-technological. Sciences 44(suppl):62–71

    Google Scholar 

  • Xie XJ, Ellis A, Wang YX, Xie ZM, Duan MY, CL S (2009) Geochemistry of redox-sensitive elements and sulfur isotopes in the high arsenic groundwater system of Datong Basin, China. Sci Total Environ 407(12):3823–3835. https://doi.org/10.1016/j.scitotenv.2009.01.041

    Article  CAS  Google Scholar 

  • Xu ZF, Liu CQ (2007) Chemical weathering in the upper reaches of Xijiang River draining the Yunnan-Guizhou Plateau, Southwest China. Chem Geol 239(1–2):83–95

    Article  CAS  Google Scholar 

  • Ye CY, Wang ZM, Hao WL, Lin XB, Han J (2014) Geochemical characteristics of uranium and thorium in sediments from Gasikule Salt Lake in western Qinghai Province. Mineral Deposits 33(05):1081–1090 (in Chinese with English Abstract)

    CAS  Google Scholar 

  • Ye CY (2013) Mechanism of the distribution and enrichment of uranium in the Gas Hure salt lake brine and sediments. Nuclear Industry Geological Research Institute, Beijing 103 pp. (in Chinese with English Abstract)

    Google Scholar 

  • Yuan JF, Guo QH, Wang YX (2014) Geochemical behaviors of boron and its isotopes in aqueous environment of the Yangbajing and Yangyi geothermal fields, Tibet, China. J Geochem Explor 140:11–22. https://doi.org/10.1016/j.gexplo.2014.01.006

    Article  CAS  Google Scholar 

  • Zhang PX (1987) Salt Lakes in Qaidam basin. Scientific Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Zhang T, Han WX, Fang XM, Zhang WL, Song CH, Yan MD (2016) Intensified tectonic deformation and uplift of the Altyn Tagh range recorded by rock magnetism and growth strata studies of the western Qaidam Basin, NE Tibetan Plateau. Glob Planet Chang 137:54–68

Download references

Acknowledgments

We are grateful to Dr. Peng Zhang kuang for his help with boron isotope measurement, and also thanks to Professor Han Wenxia and Dr. Yuan Jianfei for their constructive advice on manuscript preparation. The authors are also grateful to two anonymous reviewers whose constructive comments significantly improved the quality of the manuscript.

Funding

This research was supported by the National Natural Science Foundation of China (41521001 and 41422208) and Funds for the Natural Science Foundation of Qinghai Province (No. 2014-ZJ-703).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongchen Jiang.

Additional information

Responsible editor: Philippe Garrigues

Highlights

• The hydrochemistry and multiple isotopic (B, U) values indicated that the hydraulic connections are complex in the Gas Hure salt lake.

• The Gas Hure salt lake is recharged with river water (the Kulamulekesay and Atetikan Rivers), intercrystalline brine, and deep fluid, each contributing 44.03%, 14.95%, and 41.02%, respectively.

• The U-bearing rock is mainly dominated by silicates, carbonates, and evaporites in regions 1, 2, and 3, respectively

• The hydraulic connection profoundly affects the U distribution in the Gas Hure salt lake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, J., Jiang, H., Xu, J. et al. Hydraulic connection affects uranium distribution in the Gas Hure salt lake, Qaidam Basin, China. Environ Sci Pollut Res 25, 4881–4895 (2018). https://doi.org/10.1007/s11356-017-0722-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-0722-7

Keywords

Navigation