Skip to main content

Advertisement

Log in

Biofertilizers: a potential approach for sustainable agriculture development

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The worldwide increase in human population raises a big threat to the food security of each people as the land for agriculture is limited and even getting reduced with time. Therefore, it is essential that agricultural productivity should be enhanced significantly within the next few decades to meet the large demand of food by emerging population. Not to mention, too much dependence on chemical fertilizers for more crop productions inevitably damages both environmental ecology and human health with great severity. Exploitation of microbes as biofertilizers is considered to some extent an alternative to chemical fertilizers in agricultural sector due to their extensive potentiality in enhancing crop production and food safety. It has been observed that some microorganisms including plant growth promoting bacteria, fungi, Cyanobacteria, etc. have showed biofertilizer-like activities in the agricultural sector. Extensive works on biofertilizers have revealed their capability of providing required nutrients to the crop in sufficient amounts that resulted in the enhancement of crop yield. The present review elucidates various mechanisms that have been exerted by biofertilizers in order to promote plant growth and also provides protection against different plant pathogens. The aim of this review is to discuss the important roles and applications of biofertilizers in different sectors including agriculture, bioremediation, and ecology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abeles FB, Morgan PW, Saltveit ME Jr (2012) Ethylene in plant biology. Academic Press

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilising bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum L.). International Journal of Agricultural Biology 10:85–88

    CAS  Google Scholar 

  • Aggarwal A, Kadian N, Tanwar A, Yadav A, Gupta KK (2011) Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. Journal of Applied and Natural Science 3(2):340–351

    Google Scholar 

  • Ahemad M, Khan MS (2010a) Phosphate solubilizing Enterobacter asburiae strain PS2. Res J Microbiol 5:849–857

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2010b) Plant growth promoting activities of phosphate-solubilizing Enterobacter asburiae as influenced by fungicides. Eurasia Journal of Biosciences 4:88–95

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2011) Assessment of plant growth promoting activities of rhizobacterium Pseudomonas putida under insecticide stress. J Microbiol 1(2):54–64

    Article  Google Scholar 

  • Ahemad M, Khan MS (2012a) Effects of pesticides on plant growth promoting traits of Mesorhizobium strain MRC4. J Saudi Soc Agric Sci 11(1):63–71

    CAS  Google Scholar 

  • Ahemad M, Khan MS (2012b) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica campestris) rhizosphere. Chemosphere 86(9):945–950

    Article  CAS  Google Scholar 

  • Ahemad M, Khan MS (2012c) Ecological assessment of biotoxicity of pesticides towards plant growth promoting activities of pea (Pisum sativum)-specific Rhizobium sp. strain MRP1. Emirates Journal of Food and Agriculture 24(4):334

    Google Scholar 

  • Ahemad M, Khan MS (2012d) Evaluation of plant growth promoting activities of rhizobacterium Pseudomonas putida under herbicide-stress. Ann Microbiol 62(4):1531–1540

    Article  CAS  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. Journal of King Saud University-Science 26:1–20

    Article  Google Scholar 

  • Ahmed A, Hasnain S (2010) Auxin-producing Bacillus sp.: auxin quantification and effect on the growth of Solanum tuberosum. Pure Appl Chem 82(1):313–319

    Article  CAS  Google Scholar 

  • Akhtar MS, Chali B, Azam T (2013) Bioremediation of arsenic and lead by plants and microbes from contaminated soil. Research in Plant Sciences 1(3):68–73

    Google Scholar 

  • Aktar W, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2(1):1–12

    Article  Google Scholar 

  • Al Abboud MA, Ghany TMA, Alawlaqi MM (2013) Role of biofertilizers in agriculture: a brief review. Mycopathologia 11(2)

  • Allito BB, Nana EM, Alemneh AA (2015) Rhizobia strain and legume genome interaction effects on nitrogen fixation and yield of grain legume: a review. Molecular Soil Biology 6:1–6

    Google Scholar 

  • Angus JF (2012) Fertilizer fertilizer/fertilizing science fertilizer/fertilizing science and technology fertilizer/fertilizing technology In Encyclopedia of Sustainability Science and Technology, Springer New York 3768-3786E

  • Arora NK, Khare E, Maheshwari DK (2010) Plant growth promoting rhizobacteria: constraints in bioformulation, commercialization and future strategies. In Plant growth and health promoting bacteria Springer Berlin Heidelberg 97–116

  • Arun KS (2007) Bio-fertilizers for sustainable agriculture. In A.K.S., Bio-fertilizers for sustainable agriculture Jodhpur, India: Agribios publishers 196–197

  • Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32(11):1559–1570

    Article  CAS  Google Scholar 

  • Bardgett RD, van der Putten WH (2014) Belowground biodiversity and ecosystem functioning. Nature 515(7528):505–511

    Article  CAS  Google Scholar 

  • Bardi L, Malusà E (2012) Drought and nutritional stresses in plant: alleviating role of rhizospheric microorganisms. abiotic stress: new research. Nova Science Publishers Inc., Hauppauge, pp. 1–57

    Google Scholar 

  • Bardin SD, Huang HC, Pinto J, Amundsen EJ, Erickson RS (2004) Biological control of Pythium damping-off of pea and sugar beet by Rhizobium leguminosarum bv. viceae. Can J Bot 82(3):291–296

    Article  Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnol Adv 16(4):729–770

    Article  CAS  Google Scholar 

  • Bashan Y, de Bashan LE (2005) Plant growth-promoting. Encyclopedia of soils in the environment 1:103–115

    Article  Google Scholar 

  • Bashan Y, de Bashan LE, Prabhu SR, Hernandez JP (2014) Advances in plant growth-promoting bacterial inoculant technology: formulations and practical perspectives (1998–2013). Plant Soil 378:1–33

    Article  CAS  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35(4):1044–1051

    Article  CAS  Google Scholar 

  • Bent E, Tuzun S, Chanway CP (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47(9):793–800

    Article  CAS  Google Scholar 

  • Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb Cell Factories 13(1):1

    Article  Google Scholar 

  • Bhattacharjee R, Dey U (2014) Biofertilizer, a way toward organic agriculture:a review. Afr J Microbiol Res 8(24):2332–2342

    Article  Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28(4):1327–1350

    Article  CAS  Google Scholar 

  • Black M, Moolhuijzen P, Chapman B, Barrero R, Howieson J, Hungria M, Bellgard M (2012) The genetics of symbiotic nitrogen fixation: comparative genomics of 14 Rhizobia strains by resolution of protein clusters. Genes 3(1):138–166

    Article  CAS  Google Scholar 

  • Bücking H, Kafle A (2015) Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5(4):587–612

    Article  Google Scholar 

  • Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EV, Schulze-Lefert P (2013) Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol 64:807–838

    Article  CAS  Google Scholar 

  • Burns RC, Hardy RW (2012) Nitrogen fixation in bacteria and higher plants. Springer Science & Business Media 21:192

    Google Scholar 

  • Catroux G, Hartmann A, Revellin C (2001) Trends in Rhizobial inoculant production and use. Plant Soil 230(1):21–30

    Article  CAS  Google Scholar 

  • Chakraborty U, Chakraborty BN, Choewdhury PR, Tongden C, Basnet M (2006) Investigation on plant growth promoting rhizobacteria of tea rhizosphere. 6th international workshop on PGPR. IISR, Calicut, pp. 78–82

    Google Scholar 

  • Chandra R, Pareek RP (2007) Effect of rhizobacteria in urdbean and lentil. Indian Journal of Pulses Reserach 15:152–155

    Google Scholar 

  • Chaubey OP, Prakash R (2014) Bio-reclamation of degraded ecosystem. International Journal of Bio-Science and Bio-Technology 6(4):145–154

    Article  Google Scholar 

  • Chen JH (2006) The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. International Workshop on Sustained Management of the soil-rhizosphere system for efficient crop production and fertilizer use Land Development Department Bangkokd 16:20

  • Chibuike GU (2013) Use of mycorrhiza in soil remediation: a review. Sci Res Essays 8(35):679–1687

    Article  CAS  Google Scholar 

  • Chibuike GU, Obiora SC (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Applied and Environmental Soil Science 2014:12

    Article  CAS  Google Scholar 

  • RoyChowdhury DE, Paul MA, Banerjee SK (2014) A review on the effects of biofertilizers and biopesticides on rice and tea cultivation and productivity. International Journal of Science, Engineering and Technology 2:96–106

    Google Scholar 

  • Conway G (2012) One billion hungry: can we feed the world? Cornell University Press

  • Coppola D, Giordano D, Tinajero-Trejo M, di Prisco G, Ascenzi P, Poole RK, Verde C (2013) Antarctic bacterial haemoglobin and its role in the protection against nitrogen reactive species. Biochimica et Biophysica Acta (BBA)-Proteins and Proteomics 1834(9):1923–1931

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177(1):323–330

    Article  CAS  Google Scholar 

  • Davies PJ (2010) The plant hormones: their nature occurrence and functions. In Plant hormones Springer Netherlands 1–15

  • De Felipe MR (2006) Fijación biológica de dinitrógeno atmosférico en vida libre. In: Bedmar E, Gonzálo J, Lluch C et al (eds) Fijación de Nitrógeno:Fundamentos y Aplicaciones. Granada: Sociedad Española de Microbiología. Sociedad Española de Fijación de Nitrógeno, Granada, pp 9–16

    Google Scholar 

  • De Garcia Salamone IE, Hynes RK, Nelson LM (2006) Role of cytokinins in plant growth promotion by rhizosphere bacteria. InPGPR: Biocontrol and Biofertilization. Amsterdam, The Netherlands: Springer 173–195e

  • De Salamone IE, Di Salvo LP, Ortega JS, Sorte PM (2010) Field response of rice paddy crop to Azospirillum inoculation: physiology of rhizosphere bacterial communities and the genetic diversity of endophytic bacteria in diferent parts of the plants. Plant Soil 336(1):351–362

    Article  CAS  Google Scholar 

  • Deshwal VK, Pandey P, Kang SC, Maheshwari DK (2003) Rhizobia as a biological control agent against soil borne plant pathogenic fungi. Indian J Exp Biol 41(10):1160–1164

    CAS  Google Scholar 

  • Dey R, Pal KK, Tilak KV (2012) Influence of soil and plant types on diversity of rhizobacteria. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences 82(3):341–352

    Article  Google Scholar 

  • Diacono M, Montemurro F (2010) Long term effects of organic amendments on soil fertility: a review. Agron Sustain Dev 30(2):401–422

    Article  CAS  Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biol Biochem 41(1):154–162

    Article  CAS  Google Scholar 

  • Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212

    Article  CAS  Google Scholar 

  • Dobereiner J, Day JM, Dart PJ (1972) Nitrogenase activity and oxygen sensitivity of the Paspalum notatum-Azotobacter paspali association. Microbiology 71(1):103–116

    CAS  Google Scholar 

  • du Jardin P (2015) Plant biostimulants: definition, concept, main categories and regulation. Sci Hortic 196:3–14

    Article  CAS  Google Scholar 

  • Dutta D, Bandyopadhyay P (2009) Performance of chickpea (Cicer arietinum L.) to application of phosphorus and biofertilizer in laterite soil. Arch Agron Soil Sci 55(2):147–155

    Article  CAS  Google Scholar 

  • Egamberdiyeva D (2007) The effect of plant growth promoting bacteria on growth and nutrient uptake of maize in two different soils. Appl Soil Ecol 36(2):184–189

    Article  Google Scholar 

  • El-Banna N, Winkelmann G (1988) Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against Streptomycetes. J Appl Microbiol 85:69–78

    Article  Google Scholar 

  • Elbeltagy A, Nishioka K, Sato T, Suzuki H, Ye B, Hamada T, Isawa T, Mitsui H, Minimisawa K (2001) Endophytic colonization and in plant nitrogen fixation by a Herbaspirillum sp. isolated from wild rice species. Applied Environmental Microbiology 67(11):5285–5293

    Article  CAS  Google Scholar 

  • El-Haddad ME, Mustafa MI, Selim SM, El-Tayeb TS, Mahgoob AE, Aziz NH (2011) The nematicidal effect of some bacterial biofertilizers on Meloidogyne incognita in sandy soil. Braz J Microbiol 42(1):105–113

    Article  Google Scholar 

  • El-Tarabily KA, Soliman MH, Nassar AH, Al-Hassani HA, Sivasithamparam K, McKenna F, Hardy GS (2000) Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol 49(5):573–583

    Article  Google Scholar 

  • El-Tarabily KA (2006) Rhizosphere-competent isolates of Streptomycete and non-Streptomycete actinomycetes capable of producing cell-wall degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can J Bot 84(2):211–222

    Article  CAS  Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12(9):1193–1206

    Article  Google Scholar 

  • Feng K, Lu HM, Sheng HJ, Wang XL, Mao J (2004) Effect of organic ligands on biological availability of inorganic phosphorus in soils. Pedosphere 14(1):85–92

    CAS  Google Scholar 

  • Flores-Felix JD, Silva LR, Rivera LP, Marcos-Garcia M, Garcia-Fraile P, Martinez-Molina E, Mateos PF, Velazquez E, Andrade P, Rivas R (2015) Plants probiotics as a tool to produce highly functional fruits: the case of Phyllobacterium and vitamin C in strawberries. PLoS One 10(4):e0122281

    Article  CAS  Google Scholar 

  • Frey-Klett P, Burlinson P, Deveau A, Barret M, Tarkka M, Sarniguet A (2011) Bacterial-fungal interactions: hyphens between agricultural, clinical, environmental, and food microbiologists. Microbiol Mol Biol Rev 75(4):583–609

    Article  CAS  Google Scholar 

  • Gamalero E, Berta G, Massa N, Glick BR, Lingua G (2008) Synergistic interactions between the ACC deaminase producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth. FEMS Microbiol Ecol 64(3):459–467

    Article  CAS  Google Scholar 

  • Gamalero E, Glick BR (2010) Bacterial ACC deaminase and IAA: interactions and consequences for plant growth in polluted environments. Handbook of Phytoremediation 763–774

  • Gaur V (2010) Biofertilizer–necessity for sustainability. J Adv Dev 1:7–8

    Google Scholar 

  • Glick BR, Bashan Y (1997) Genetic manipulation of plant growth-promoting bacteria to enhance biocontrol of phytopathogens. Biotechnol Adv 15(2):353–378

    Article  CAS  Google Scholar 

  • Glick BR (2012) Plant growth promoting bacteria: mechanisms and applications. Scientifica 2012:15

    Article  CAS  Google Scholar 

  • Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39

    Article  CAS  Google Scholar 

  • Glick BR (2015) Resource acquisition. In Beneficial plant-bacterial interactions Springer International Publishing 29–63

  • Govindarajan M, Balandreau J, Kwon SW (2008) Effects of the inoculation of Burkholderiavietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55(1):21–37

    Article  Google Scholar 

  • Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium–legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20(3):186–194

    Article  CAS  Google Scholar 

  • Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (PGPR): current and future prospects for development of sustainable agriculture. Journal of microbial and Biochemical technology 7:2

    Google Scholar 

  • Heidari M, Golpayegani A (2012) Effects of water stress and inoculation with plant growth promoting rhizobacteria (PGPR) on antioxidant status and photosynthetic pigments in basil (Ocimum basilicum L.). J Saudi Soc Agric Sci 11(1):57–61

    Google Scholar 

  • Hermosa R, Viterbo A, Chet I, Monte E (2012) Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158(1):17–25

    Article  CAS  Google Scholar 

  • Herrmann L, Lesueur D (2013) Challenges of formulation and quality of biofertilizers for successful inoculation. Appl Microbiol Biotechnol 97(20):8859–8873

    Article  CAS  Google Scholar 

  • Hibbing ME, Fuqua C, Parsek MR, Peterson SB (2010) Bacterial competition: surviving and thriving in the microbial jungle. Nat Rev Microbiol 8(1):15–25

    Article  CAS  Google Scholar 

  • Hider RC, Kong X (2010) Chemistry and biology of siderophores. Nat Prod Rep 27(5):637–657

    Article  CAS  Google Scholar 

  • Hoffman BM, Dean DR, Seefeldt LC (2009) Climbing nitrogenase: toward a mechanism of enzymatic nitrogen fixation. Acc Chem Res 42(5):609–619

    Article  CAS  Google Scholar 

  • Hossain MA, Piyatida P, da Silva JA, Fujita M (2012) Molecular mechanism of heavy metal toxicity and tolerance in plants: central role of glutathione in detoxification of reactive oxygen species and methylglyoxal and in heavy metal chelation. Journal of Botany 2012:37

    Article  CAS  Google Scholar 

  • Huang XF, Chaparro JM, Reardon KF, Zhang R, Shen Q, Vivanco JM (2014) Rhizosphere interactions: root exudates, microbes, and microbial communities. Botany 92(4):267–275

    Article  Google Scholar 

  • Inbar J, Chet I (1991) Evidence that chitinase produced by Aeromonas caviae is involved in the biological control of soil-borne plant pathogens by this bacterium. Soil Biol Biochem 23(10):973–978

    Article  CAS  Google Scholar 

  • Indiragandhi P, Anandham R, Madhaiyan M, Sa TM (2008) Characterization of plant growth-promoting traits of bacteria isolated from larval guts of diamondback moth Plutella xylostella (Lepidoptera: Plutellidae). Curr Microbiol 56(4):327–333

    Article  CAS  Google Scholar 

  • Innerebner G, Knief C, Vorholt JA (2011) Protection of Arabidopsis thaliana against leaf pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol 77(10):3202–3210

    Article  CAS  Google Scholar 

  • Ismail AE, Hasabo SA (2000) Evaluation of some new Egyptian commercial biofertilizers, plant nutrients and a biocide against Meloidogyne incognita root knot nematode infecting sunflower. Pak J Nematol 18:39–49

    Google Scholar 

  • Jetiyanon K, Pliabanchang P (2011) Potential of Bacillus cereus strain RS87 for the partial replacement of chemical fertilizers in the production of Thai rice cultivars. Journal of Science, Food and Agriculture 92(5):1080–1085

    Article  CAS  Google Scholar 

  • Jha MN, Kumar P, Chourasia SK (2012) Hope, hype and reality of biofertilizer. Fertil Technol 121:448–480

    Google Scholar 

  • Jilani G, Akram A, Ali RM, Hafeez FY, Shamsi IH, Chaudhry AN, Chaudhry AG (2007) Enhancing crop growth, nutrients availability, economics and beneficial rhizosphere microflora through organic and biofertilizers. Ann Microbiol 57(2):177–184

    Article  CAS  Google Scholar 

  • John RP, Tyagi RD, Brar SK, Surampalli RY, Prévost D (2011) Bio-encapsulation of microbial cells for targeted agricultural delivery. Crit Rev Biotechnol 31(3):211–226

    Article  CAS  Google Scholar 

  • Juwarkar AA, Dubey K, Khobragade R, Nimje M, Singh SK (2001) Integrated biotechnological approach for phytoremediation of copper mine spoil dumps and tailing. In Proceeding of International Conference on Industrial Pollution and Control Technologies (ICIPACT- 2001), JNTU, Hyderabad 7–10

  • Juwarkar AA, Jambhulkar HP (2008) Phytoremediation of coal mine spoil dump through integrated biotechnological approach. Bioresour Technol 99(11):4732–4741

    Article  CAS  Google Scholar 

  • Juwarkar AA, Singh SK (2007) Utilisation of municipal solid waste as an amendment for reclamation of coal mine spoil dump. Int J Environ Technol Manag 7:407–420

    Article  CAS  Google Scholar 

  • Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnology Report 4(3):179–183

    Article  Google Scholar 

  • Kao CM, Chen SC, Chen YS, Lin HM, Chen YL (2003) Detection of Burkholderia pseudomalle in rice fields with PCR-based technique. Folia Microbiol 48(4):521–524

    Article  CAS  Google Scholar 

  • Khan MZ, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of meta contaminated soils. Environ Chem Lett 7(1):1–19

    Article  CAS  Google Scholar 

  • Khan Z, Tiyagi SA, Mahmood I, Rizvi R (2012) Effects of N fertilization, organic matter, and biofertilizers on the growth and yield of chilli in relation to management of plant-parasitic nematodes. Turk J Bot 36(1):73–78

    CAS  Google Scholar 

  • Khan AL, Waqas M, Kang SM (2014) Bacterial endophytes Sphingomonas sp LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695

    Article  CAS  Google Scholar 

  • Kiss T, Farkas E (1998) Metal-binding ability of desferrioxamine B. Journal of Inclusion Phenomena and Molecular Recogniion in Chemistry 32:385–403

    Article  CAS  Google Scholar 

  • Kloepper JW, Leong J, Teintze M, Schroth MN (1980) Enhanced plant growth by siderophores produced by plant growth-promoting rhizobacteria. Nature 286(5776):885–886

    Article  CAS  Google Scholar 

  • Koths JS, Gunner HR (1976) Establishment of a rhizosphere microflora on carnation as a means of plant protection in steamed greenhouse soils. J Am Soc Hortic Sci 91:617–626

    Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC, Maheswari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. manak by bacterial combinations amended with chemical fertilizer. Crop Protect 29(6):591–598

    Article  Google Scholar 

  • Kumar M, Puri A (2012) A review of permissible limits of drinking water. Indian journal of occupational and environmental medicine 16(1):40

    Article  Google Scholar 

  • Kumar S, Chaudhuri S, Maiti SK (2013) Soil dehydrogenase enzyme activity in natural and mine soil-a review. Middle-East J Sci Res 13(7):898–906

    CAS  Google Scholar 

  • Lenart A, Wolny-Koładka K (2013) The effect of heavy metal concentration and soil pH on the abundance of selected microbial groups within Arcelor Mittal Poland steelworks in Cracow. Bull Environ Contam Toxicol 90(1):85–90

    Article  CAS  Google Scholar 

  • Lim KT, Shukor MY, Wasoh H (2014) Physical, chemical, and biological methods for the removal of arsenic compounds. Biomed Res Int 2014:9

    Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. Geomicrobiol J 29(5):413–421

    Article  CAS  Google Scholar 

  • Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140(5):943–950

    Article  CAS  Google Scholar 

  • Long SP, Zhu XG, Naidu SL, Ort DR (2006) Can improvement in photosynthesis increase crop yields? Plant, Cell and Environment 29(3):315–330

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10(3):371–382

    Article  CAS  Google Scholar 

  • Macilwain C (2004) Organic: is it the future of farming? Nature 428(6985):792–793

    Article  CAS  Google Scholar 

  • Mahdi SS, Hassan GI, Samoon SA Rather HA, Dar SA, Zehra B (2010) Bio-fertilizers in organic agriculture. Journal of Phytology 2(10)

  • Mahdi SS, Talat MA, Hussain Dar M, Hamid A, Ahmad L (2012) Soil phosphorus fixation chemistry and role of phosphate solubilizing bacteria in enhancing its efficiency for sustainable cropping—a review. Journal of Pure and Applied Microbiology 6(4):1–7

    Google Scholar 

  • Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A, Gueunier M, Cromer L, Giraudet D, Formey D, Niebel A, Martinez EA (2011) Fungal lipochitooligosaccharide symbiotic signals in Arbuscular mycorrhiza. Nature 469(7328):58–63

    Article  CAS  Google Scholar 

  • Maksimov IV, Abizgil’dina RR, Pusenkova LI (2011) Plant growth promoting rhizobacteria as alternative to chemical crop protectors from pathogens (review). Appl Biochem Microbiol 47:333–345

    Article  CAS  Google Scholar 

  • Malusa E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 2012:12

    Article  Google Scholar 

  • Malusa E, Vassilev N (2014) A contribution to set a legal framework for biofertilisers. Appl Microbiol Biotechnol 98(15):6599–6607

    Article  CAS  Google Scholar 

  • Mandal B, Vlek PL, Mandal LN (1999) Beneficial effects of blue-green algae and Azolla, excluding supplying nitrogen, on wetland rice fields: a review. Biol Fertil Soils 28(4):329–342

    Article  CAS  Google Scholar 

  • Martin XM, Sumathi CS, Kannan VR (2011) Influence of agrochemicals and Azotobacter sp. application on soil fertility in relation to maize growth under nursery conditions. Eurasia Journal of Biosciences 5:19–28

    Article  Google Scholar 

  • Martínez-Viveros O, Jorquera MA, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10(3):293–319

    Article  Google Scholar 

  • Mathivanan R, Umavathi S, Ramasamy PK, Thangam Y (2015) Influence of vermicompost on the activity of the plant growth regulators in the leaves of the Indian butter bean plant, Dolichos lab lab L. International Journal of Advanced Research in Biological Sciences 2(1):84–89

    Google Scholar 

  • Mazid M, Khan TA (2015) Future of bio-fertilizers in Indian agriculture: an overview. International Journal of Agricultural and Food Research 3(3):10–23

    Google Scholar 

  • Mazurier S, Corberand T, Lemanceau P, Raaijmakers JM (2009) Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt. The ISME journal 3(8):977–991

    Article  CAS  Google Scholar 

  • McComb RB, Bowers Jr GN, Posen S (2013) Alkaline phosphatase. Springer Science & Business Media 79–436

  • Medina A, Azcón R (2010) Effectiveness of the application of arbuscular mycorrhiza fungi and organic amendments to improve soil quality and plant performance under stress conditions. J Soil Sci Plant Nutr 10(3):354–372

    Article  Google Scholar 

  • Mehes-Smith M, Nkongolo K, Cholewa E (2013) Coping mechanisms of plants to metal contaminated soil. Environmental change and sustainability 978–953

  • Mehnaz S (2015) Azospirillum: a biofertilizer for every crop. In Plant microbes symbiosis: applied facets, Springer India 297–314

  • Mehrvarz S, Chaichi MR, Alikhani HA (2008) Effects of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on yield and yield components of barley (Hordeum vulgare L.). American-Eurasian Journal of Agriculture and Environmental Sciences 3(6):822–828

    Google Scholar 

  • Mia MB, Shamsuddin ZH (2010) Nitrogen fixation and transportation by rhizobacteria: a scenario of rice and banana. Int J Bot 6:235–242

    Article  Google Scholar 

  • Mishra DJ, Singh R, Mishra UK, Kumar SS (2013) Role of bio-fertilizer in organic agriculture: a review. Res J Recent Sci 2:39–41

    CAS  Google Scholar 

  • Mishra P, Dash D (2014) Rejuvenation of biofertilizer for sustainable agriculture and economic development. Consilience: The Journal of Sustainable Development 11(1):41–61

    Google Scholar 

  • Moe LA (2013) Amino acids in the rhizosphere: from plants to microbes. Am J Bot 100(9):1692–1705

    Article  CAS  Google Scholar 

  • Mohammadi K, Sohrabi Y (2012) Bacterial biofertilizers for sustainable crop production: a review. ARPN Journal of Agricultural and Biological Science 7(5):307–316

    Google Scholar 

  • Moraditochaee M, Azarpour E, Bozorgi HR (2014) Study effects of bio-fertilizers, nitrogen fertilizer and farmyard manure on yield and physiochemical properties of soil in lentil farming. International Journal of Biosciences 4(4):41–48

    CAS  Google Scholar 

  • Moreno-Sarmiento N, Moreno-Rodriguez L, Uribe-Velez D (2007) Biofertilizantes para la agricultura en Colombia. Biofertilizantes en Iberoamerica:Visionté cnica, científica y empresarial. Denad Internacional, Montevideo, pp. 38–45

    Google Scholar 

  • Munoz-Rojas J, Caballero-Mellado J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46:454–464

    Article  CAS  Google Scholar 

  • Naiman AD, Latrónico A, de Salamone IE (2009) Inoculation of wheat with Azospirillum brasilense and Pseudomonas luorescens: impact on the production and culturable rhizosphere microlora. Eur J Soil Biol 45(1):44–51

    Article  Google Scholar 

  • Nascimento FX, Brígido C, Glick BR, Oliveira S (2012) ACC deaminase genes are conserved among Mesorhizobium species able to nodulate the same host plant. FEMS Microbiol Lett 336(1):26–37

    Article  CAS  Google Scholar 

  • Nawaz K, Hussain K, Choudary N, Majeed A, Ilyas U, Ghani A, Lin F, Ali K, Afghan S, Raza G, Lashari MI (2011) Eco-friendly role of biodegradation against agricultural pesticides hazards. Afr J Microbiol Res 5(3):177–183

    Google Scholar 

  • Neubauer U, Furrer G, Kayser A, Schulin R (2000) Siderophores, NTA, and citrate: potential soil amendments to enhance heavy metal mobility in phytoremediation. International Journal of Phytoremediation 2(4):353–368

    Article  CAS  Google Scholar 

  • Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15(2):327

    Google Scholar 

  • Nowak TB, Gould SJ, Kraus J, Loper JE (1994) Production of 2,4-diacetylphloroglucinol by the biocontrol agent Pseudomonas fluorescens Pf-5.Canadian. J Microbiol 40(12):1064–1066

    Google Scholar 

  • Ortiz-Hernández ML, Sánchez-Salinas E, Dantán-González E, Castrejón-Godínez ML (2013) Pesticide biodegradation: mechanisms, genetics and strategies to enhance the process. Biodegradation-life science. Intech-publishing, Rijeka, pp. 251–287

    Google Scholar 

  • Ozkoc I, Deliveli MH (2001) In vitro inhibition of the mycelia growth of some root rot fungi by Rhizobium leguminosarum biovar phaseoli isolates. Turk J Biol 25(4):435–445

    Google Scholar 

  • Pandey J, Singh A (2012) Opportunities and constraints in organic farming: an Indian perspective. J Sci Res 56:47–72

    Google Scholar 

  • Parray JA, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P (2016) Current perspectives on plant growth promoting rhizobacteria. Journal of Plant growth regulation 1–26

  • Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14(3):290–295

    Article  CAS  Google Scholar 

  • Peng S, Biswas JC, Ladha JK, Gyaneshwar P, Chen Y (2002) Influence of rhizobial inoculation on photosynthesis and grain yield of rice. Agron J 94(4):925–929

    Article  Google Scholar 

  • Pereg L, McMillan M (2015) Scoping the potential uses of beneficial microorganisms for increasing productivity in cotton cropping systems. Soil Biol Biochem 80:349–358

    Article  CAS  Google Scholar 

  • Pereira SI, Castro PM (2014) Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural P-deficient soils. Ecol Eng 73:526–535

    Article  Google Scholar 

  • Perrig D, Boiero ML, Masciarelli OA, Penna C, Ruiz OA, Cassán FD, Luna MV (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75(5):1143–1150

    Article  CAS  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  Google Scholar 

  • Plett JM, Kemppainen M, Kale SD, Kohler A, Legue V, Brun A, Tyler BM, Pardo AG, Martin F (2011) A secreted effector protein of Laccaria bicolor is required for symbiosis development. Curr Biol 21(14):1197–1203

    Article  CAS  Google Scholar 

  • Prabha C, Maheshwari DK, Bajpai VK (2013) Diverse role of fast growing Rhizobia in growth promotion and enhancement of psoralen content in Psoralea Corylifolia L. Pharmacogn Mag 9(Suppl 1):S57

    Google Scholar 

  • Pretty J, Bharucha ZP (2015) Integrated pest management for sustainable intensification of agriculture in Asia and Africa. Insects 6(1):152–182

    Article  Google Scholar 

  • Radzki W, Manero FG, Algar E, García JL, García-Villaraco A, Solano BR (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104(3):321–330

    Article  CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MN, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    Article  CAS  Google Scholar 

  • Rajkumar M, Sandhya S, Prasad MN, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574

    Article  CAS  Google Scholar 

  • Ramakrishnan B, Megharaj M, Venkateswarlu K, Sethunathan N, Naidu R (2011) Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. In Reviews of Environmental Contamination and Toxicology Springer New York 211:63–120

  • Reddy BS (2013) Soil health: issues and concerns—a review No. 131. Working Paper

  • Reinhold-Hurek B, Hurek T (1998) Interactions of gramineous plants with Azoarcus spp. and other diazotrophs:identification, localization, and perspectives to study their function. Crit Rev Plant Sci 17(1):29–54

    Article  Google Scholar 

  • Robison MM, Shah S, Tamot B, Pauls KP, Moffatt BA, Glick BR (2001) Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol Plant Pathol 2(3):135–134

    Article  CAS  Google Scholar 

  • Sabry SR, Saleh SA, Batchelor CA, Jones J, Jotham J, Webster G, Kothari SL, Davey MR, Cocking EC (1997) Endophytic establishment of Azorhizobium caulinodans in wheat. Proceedings of the Royal Society of London B: Biological Sciences 264(1380):341–346

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    Article  CAS  Google Scholar 

  • Saha R, Saha N, Donofrio RS, Bestervelt LL (2012) Microbial siderophores: a mini review. J Basic Microbiol 52:1–15

    Article  Google Scholar 

  • Sahu PK, Brahmaprakash GP (2016) Formulations of biofertilizers-approaches and advances. In Microbial inoculants in sustainable agricultural productivity Springer India 179–198

  • Salvioli A, Zouari I, Chalot M, Bonfante P (2012) The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. BMC Plant Biol 12(1):1

    Article  CAS  Google Scholar 

  • Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 111(5):743–767

    Article  CAS  Google Scholar 

  • Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169(1):18–29

    Article  CAS  Google Scholar 

  • Savci S (2012) An agricultural pollutant: chemical fertilizer. International Journal of Environmental Science and Development 3(1):73

    Article  Google Scholar 

  • Schmidt CS, Lorenz D, Wolf GA (2001) Biological control of the grapevine dieback fungus Eutypa lata I: screening of bacterial antagonists. J Phytopathol 149:427–435

    Article  Google Scholar 

  • Seefeldt LC, Hoffman BM, Dean DR (2009) Mechanism of Mo-dependent nitrogenase. Annu Rev Biochem 78:701–722

    Article  CAS  Google Scholar 

  • Selvakumar G, Mohan M, Kundu S, Gupta AD, Joshi P, Nazim S, Gupta HS (2008) Cold tolerance and plant growth promotion potential of Serratia marcescens strain SRM (MTCC 8708) isolated from flowers of summer squash (Cucurbita pepo). Lett Appl Microbiol 46(2):171–175

    Article  CAS  Google Scholar 

  • Shahaby AF, Alharthi AA, El Tarras AE (2016) Screening of natural bacterial flora of pomegranate roots (Punica granatum L.) and their antibiotic activity in Taif, Saudi Arabia. Int J Curr Microbiol App Sci 5(2):1–6

    Article  Google Scholar 

  • Shaharoona B, Arshad M, Zahir ZA (2006) Effect of plant growth promoting rhizobacteria containing ACC-deaminase on maize (Zea mays L.) growth under axenic conditions and on nodulation in mung bean (Vigna radiata L.). Lett Appl Microbiol 42(2):155–159

    Article  CAS  Google Scholar 

  • Shaheen S, Sundari KS (2013) Exploring the applicability of PGPR to remediate residual organophosphate and carbamate pesticides used in agriculture fields. International Journal of Agriculture Food Science & Technology 4(10):947–954

    Google Scholar 

  • Shamseldin A (2013) The role of different genes involved in symbiotic nitrogen fixation—review. Global Journal of Biotechnology & Biochemistry 8(4):84–94

    CAS  Google Scholar 

  • Sharma S, Gupta R, Dugar G, Srivastava AK (2012) Impact of application of biofertilizers on soil structure and resident microbial community structure and function. In Bacteria in Agrobiology: Plant Probiotics Springer Berlin Heidelberg 65–77

  • Shaukat SS, Siddiqui IA (2003) Influence of mineral and carbon sources on biological control of charcoal rot fungus, Macrofomina phaseoli by fluorescent pseudomonads in tomato. Lett Appl Microbiol 36:392–398

    Article  CAS  Google Scholar 

  • Sheoran V, Sheoran AS, Poonia P (2010) Soil reclamation of abandoned mine land by revegetation: a review. International Journal of Soil, Sediment and Water 3(2):13

    Google Scholar 

  • Siddiqui ZA, Mahmood I (2001) Effects of rhizobacteria and root symbionts on the reproduction of Meloidogyne javanica and growth of chickpea. Bioresour Technol 79:41–45

    Article  CAS  Google Scholar 

  • Siddiqui IA, Ehteshamul-Haque S, Ghaffar A (1998) Effect of Rhizobia and fungal antagonists in the control of root infecting fungi on sunflower and chickpea. Pak J Bot 30:279–286

    Google Scholar 

  • Shinwari KI, Shah AU, Afridi MI, Zeeshan M, Hussain H, Hussain J, Ahmad O (2015). Application of plant growth promoting rhizobacteria in bioremediation of heavy metal polluted soil. Asian Journal of Multidisciplinary Studies 3(4)

  • Simonet P, Normand P, Moiroud A (1990) Identification of Frankia strains in nodules by hybridization of polymerase chain reaction products with strain-specific oligonucleotide probes. Arch Microbiol 153(3):235–240

    Article  CAS  Google Scholar 

  • Singh JS, Pandey VC, Singh DP (2011) Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ 140(3):339–353

    Article  Google Scholar 

  • Singh RP, Shelke GM, Kumar A, Jha PN (2015) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:1255

    Google Scholar 

  • Singleton P, Keyser H, Sande E (2002) Development and evaluation of liquid inoculants. Inoculants and nitrogen fixation of legumes in Vietnam. Australian Centre for International Agricultural Research, Canberra, pp. 52–66

    Google Scholar 

  • Smith BE, Richards RL, Newton WE (eds) (2013) Catalysts for nitrogen fixation: nitrogenases, relevant chemical models and commercial processes. Springer Science & Business Media 1:340

  • Sneh B (1981) Use of rhizosphere chitinolytic bacteria for biological control of Fusarium oxysporum f. sp. diambi in carnation. J Phytopathol 100:251–256

    Article  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harbor Perspectives in Biology 3(4)

  • Stearns JC, Glick BR (2003) Transgenic plants with altered ethylene biosynthesis or perception. Biotechnol Adv 21(3):193–210

    Article  CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506

    Article  CAS  Google Scholar 

  • Suja G (2008) Strategies for organic production of tropical tuber crops. In: Venkateswarlu B, Balloli SS, Ramakrishna YS (eds) Organic farming in rain fed agriculture: opportunities and constraints. Central Research Institute for Dryland Agriculture, Hyderabad, pp 135–143

    Google Scholar 

  • Sujanya S, Chandra S (2011) Effect of part replacement of chemical fertilizers with organic and bio-organic agents in ground nut, Arachis hypogea. Journal of Algal Biomass Utilization 2(4):38–41

    Google Scholar 

  • Suzaki T, Kawaguchi M (2014) Root nodulation: a developmental program involving cell fate conversion triggered by symbiotic bacterial infection. Curr Opin Plant Biol 21:16–22

    Article  CAS  Google Scholar 

  • Suzaki T, Yoro E, Kawaguchi M (2015) Chapter three-leguminous plants: inventors of root nodules to accommodate symbiotic bacteria. Int Rev Cell Mol Biol 316:111–158

    Article  Google Scholar 

  • Tairo EV, Ndakidemi PA (2013) Possible benefits of Rhizobial inoculation and phosphorus supplementation on nutrition, growth and economic sustainability in grain legumes. American Journal of Research Communication 1(12):532–556

    Google Scholar 

  • Thomine S, Lanquar V (2011) Iron transport and signaling in plants. In Transporters and Pumps in Plant Signaling, Springer Berlin Heidelberg 99–131

  • Tie-qui XI (2008) Research and application of plant-growth promoting rhizobacteria [J]. Journal of Jiyuan Vocational and Technical College 3:006

    Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418(6898):671–677

    Article  CAS  Google Scholar 

  • Trabelsi D, Mhamdi R (2013) Microbial inoculants and their impact in microbial soil microbial communities: a review. Biomed Res Int 2013:11

    Article  Google Scholar 

  • Upadhyaya H, Panda SK, Bhattacharjee MK, Dutta S (2010) Role of Arbuscular mycorrhiza in heavy metal tolerance in plants: prospects for phytoremidiation. Journal of Phytology 2(7)

  • Verhagen BW, Glazebrook J, Zhu T, Chang HS, van Loon LC, Pieterse CM (2004) The transcriptome of rhizobacteria-induced systemic resistance in Arabidopsis. Mol Plant-Microbe Interact 17(8):895–908

    Article  CAS  Google Scholar 

  • Verma JP, Yadav J, Tiwari KN, Lavakush SV (2010) Impact of plant growth promoting rhizobacteria on crop production. Int J Agric Res 5:954–983

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255(2):571–586

    Article  CAS  Google Scholar 

  • Vijayan R, Palaniappan P, Tongmin SA, Padmanaban E, Natesan M (2013) Rhizobitoxine enhances nodulation by inhibiting ethylene synthesis of Bradyrhizobium elkanii from lespedeza species: validation by homology modeling and molecular docking study. World Journal of Pharmacy and Pharmaceutical Sciences 2:4079–4094

    Google Scholar 

  • Wagner SC (2012) Biological nitrogen fixation. Nature Education Knowledge 3(10):15

    Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132(1):44–51

    Article  CAS  Google Scholar 

  • Wang H, Shen L, Li-mei Z, Ji-zong Z, Tia-nzi R, Bin-quan F, Hong-bin L (2014) Preparation and utilization of phosphate biofertilizers using agricultural waste. J Integr Agric 14(1):158–167

    Article  CAS  Google Scholar 

  • Wani SA, Chand S, Ali T (2013) Potential use of Azotobacter chroococcum in crop production: an overview. Curr Agric Res 1(1):35–38

    Article  Google Scholar 

  • Weekley J, Gabbard J, Nowak J (2012) Micro-level management of agricultural inputs: emerging approaches. Agronomy 2(4):321–357

    Article  Google Scholar 

  • Weston LA, Ryan PR, Watt M (2012) Mechanisms for cellular transport and release of allelochemicals from plant roots into the rhizosphere. Journal of experimental botany ers054

  • Wittenberg JB, Wittenberg BA, Day DA, Udvardi MK, Appleby CA (1996) Siderophore bound iron in the peribacteroid space of soybean root nodules. Plant Soil 178(2):161–169

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology 2011:20

    Article  Google Scholar 

  • Youssef MM, Ali MS (1998) Management of Meloidogyne incognita infecting cowpea by using some native blue green algae. Anzeiger für Schädlingskunde, Pflanzenschutz, Umweltschutz 71(1):15–16

    Article  Google Scholar 

  • Youssef MM, Eissa MF (2014) Biofertilizers and their role in management of plant parasitic nematodes. A review. E3 Journal of Biotechnology and Pharmaceutical Research 5(1):1–6

    Google Scholar 

  • Zahir ZA, Shah MK, Naveed M, Akhter MJ (2010) Substrate dependent auxin production by Rhizobium phaseoli improves the growth and yield of Vigna radiata L. under salt stress conditions. J Microbiol Biotechnol 20(9):1288–1294

    Article  CAS  Google Scholar 

  • Zahir ZA, Zafar-ul-Hye M, Sajjad S, Naveed M (2011) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for coinoculation with Rhizobium leguminosarum to improve growth, nodulation, and yield of lentil. Biol Fertil Soils 47(4):457–465

    Article  CAS  Google Scholar 

  • Zaki MF, Abdelhafeez A, Camilia AM (eds) (2010) Influence of applying phosphate biofertilizers and different levels of phosphorus sources on the productivity, quality and chemical composition of sweet fennel (Foeniculum vulgare mill.). Aust J Basic Appl Sci 4(2):334–347

  • Zhang PJ, Broekgaarden C, Zheng SJ, Snoeren TA, Loon J, Gols R, Dicke M (2013) Jasmonate and ethylene signaling mediate whitefly-induced interference with indirect plant defense in Arabidopsis thaliana. New Phytol 197(4):1291–1299

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Priya Gupta for her valuable contributions for the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prosun Tribedi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Hailong Wang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahanty, T., Bhattacharjee, S., Goswami, M. et al. Biofertilizers: a potential approach for sustainable agriculture development. Environ Sci Pollut Res 24, 3315–3335 (2017). https://doi.org/10.1007/s11356-016-8104-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8104-0

Keywords

Navigation