Skip to main content
Log in

Sol-gel synthesis of TiO2 nanoparticles: effect of Pluronic P123 on particle’s morphology and photocatalytic degradation of paraquat

  • Environmental Photocatalysis and Photochemistry for a Sustainable World: A Big Challenge
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

We report a facile method to tune TiO2 nanoparticles’ morphology by modifying and an acid-catalyzed sol-gel synthesis with Pluronic P123. Synthesized particles were characterized by transmission electron microscopy, BET analysis, and X-ray diffraction spectroscopy. XRD analysis revealed a high anatase content while BET measurements showed that porous volume strongly depends on the amount of P123. We demonstrate that high amounts of P123 increase particle’s aspect-ratio from spherical to rod-shape morphology. We evaluated the photocatalytic performances for the removal of methyl viologen (paraquat) and found that best performances are obtained for the following weight ratio P123/TiO2 = 7.5. Furthermore, P25 is less active than synthesized nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Andreozzi R (1999) Advanced oxidation processes (AOP) for water purification and recovery. Catal Today 53:51–59. doi:10.1016/S0920-5861(99)00102-9

    Article  CAS  Google Scholar 

  • Bu S, Jin Z, Liu X et al (2004) Fabrication of TiO2 porous thin films using peg templates and chemistry of the process. Mater Chem Phys 88:273–279. doi:10.1016/j.matchemphys.2004.03.033

    Article  CAS  Google Scholar 

  • Bu SJ, Jin ZG, Liu XX et al (2005) Synthesis of TiO2 porous thin films by polyethylene glycol templating and chemistry of the process. J Eur Ceram Soc 25:673–679. doi:10.1016/j.jeurceramsoc.2003.12.025

    Article  CAS  Google Scholar 

  • Calleja G, Serrano D, Sanz R (2004) Study on the synthesis of high-surface-area mesoporous TiO2 in the presence of nonionic surfactants. Ind Eng Chem Res 2485–2492. doi:10.1021/ie030646a

  • Carra I, Sanchez Perez JA, Malato S et al (2014) Performance of different advanced oxidation processes for tertiary wastewater treatment to remove the pesticide acetamiprid. J Chem Technol Biotechnol 91:72–81. doi:10.1002/jctb.4577

    Article  Google Scholar 

  • Christoforidis KC, Sengele A, Keller V, Keller N (2015) Single-step synthesis of SnS < inf > 2</inf > Nanosheet-decorated TiO < inf > 2</inf > Anatase nanofibers as efficient photocatalysts for the degradation of gas-phase diethylsulfide. ACS Appl Mater Interfaces 7:19324–19334. doi:10.1021/acsami.5b05370

    Article  CAS  Google Scholar 

  • Dinis-Oliveira RJ, Duarte JA, Sánchez-Navarro A et al (2008) Paraquat poisonings: mechanisms of lung toxicity, clinical features, and treatment. Crit Rev Toxicol 38:13–71. doi:10.1080/10408440701669959

    Article  CAS  Google Scholar 

  • Gomes A, Fernandes E, Lima JLFC (2005) Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 65:45–80. doi:10.1016/j.jbbm.2005.10.003

    Article  CAS  Google Scholar 

  • Hashimoto K, Irie H, Fujishima A (2007) A historical overview and future prospects. AAPPS Bull 17:12–28. doi:10.1007/BF00290457

    Google Scholar 

  • He W, Liu Y, Wamer WG, Yin J-J (2014) Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. J Food Drug Anal 22:49–63. doi:10.1016/j.jfda.2014.01.004

    Article  CAS  Google Scholar 

  • Ishibashi KI, Fujishima A, Watanabe T, Hashimoto K (2000) Detection of active oxidative species in TiO2 photocatalysis using the fluorescence technique. Electrochem Commun 2:207–210. doi:10.1016/S1388-2481(00)00006-0

    Article  CAS  Google Scholar 

  • Jahromi HS, Taghdisian H, Afshar S, Tasharrofi S (2009) Effects of pH and polyethylene glycol on surface morphology of TiO2 thin film. Surf Coatings Technol 203:1991–1996. doi:10.1016/j.surfcoat.2009.01.034

    Article  CAS  Google Scholar 

  • Jitputti J, Suzuki Y, Yoshikawa S (2008) Synthesis of TiO2 nanowires and their photocatalytic activity for hydrogen evolution. Catal Commun 9:1265–1271. doi:10.1016/j.catcom.2007.11.016

    Article  CAS  Google Scholar 

  • Lee J, Han S, Hyeon T (2004) Synthesis of new nanoporous carbon materials using nanostructured silica materials as templates. 478–486

  • Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition metal oxides. Prog Solid State Chem 18:259–341. doi:10.1016/0079-6786(88)90005-2

    Article  CAS  Google Scholar 

  • Livage J, Sanchez C, Henry MDS (1989) The chemistry of the sol gel process. Solid State Ionics 33:633–638

    Article  Google Scholar 

  • Louit G, Foley S, Cabillic J et al (2005) The reaction of coumarin with the OH radical revisited: hydroxylation product analysis determined by fluorescence and chromatography. Radiat Phys Chem 72:119–124. doi:10.1016/j.radphyschem.2004.09.007

    Article  CAS  Google Scholar 

  • Marien CBD, Cottineau T, Robert D, Drogui P (2016) TiO2 nanotube arrays: influence of tube length on the photocatalytic degradation of paraquat. Appl Catal B Environ 194:1–6. doi:10.1016/j.apcatb.2016.04.040

    Article  CAS  Google Scholar 

  • Moctezuma E, Leyva E, Monreal E et al (1999) Photocatalytic degradation of the herbicide “Paraquat.”. Chemosphere 39:511–517

    Article  CAS  Google Scholar 

  • Myilsamy M, Mahalakshmi M, Murugesan V, Subha N (2015) Enhanced photocatalytic activity of nitrogen and indium co-doped mesoporous TiO < inf > 2</inf > nanocomposites for the degradation of 2,4-dinitrophenol under visible light. Appl Surf Sci 342:1–10. doi:10.1016/j.apsusc.2015.03.017

    Article  CAS  Google Scholar 

  • Newton GL, Milligan JR (2006) Fluorescence detection of hydroxyl radicals. Radiat Phys Chem 75:473–478. doi:10.1016/j.radphyschem.2005.10.011

    Article  CAS  Google Scholar 

  • Nosaka Y, Komori S, Yawata K et al (2003) Photocatalytic •OH radical formation in TiO2 aqueous suspension studied by several detection methods. Phys Chem Chem Phys 5:4731–4735. doi:10.1039/b307433a

    Article  CAS  Google Scholar 

  • Organization WH (1984) Paraquat and diquat. International Programme on Chemical Safety

  • Peng T, Zhao D, Dai K et al (2005) Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity. J Phys Chem B 109:4947–4952. doi:10.1021/jp044771r

    Article  CAS  Google Scholar 

  • Tian B, Yang H, Liu X et al (2002) Fast preparation of highly ordered nonsiliceous mesoporous materials via mixed inorganic precursors. Chem Commun (Camb):1824–1825. doi:10.1039/b205006d

  • Wang Z, Ma W, Chen C et al (2011) Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—a mini review. Chem Eng J 170:353–362. doi:10.1016/j.cej.2010.12.002

    Article  CAS  Google Scholar 

  • Wen J, Li X, Liu W et al (2015) Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Cuihua Xuebao/Chinese J Catal 36:2049–2070. doi:10.1016/S1872-2067(15)60999-8

    Article  CAS  Google Scholar 

  • Xiang Q, Yu J, Wong PK (2011) Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J Colloid Interface Sci 357:163–167. doi:10.1016/j.jcis.2011.01.093

    Article  CAS  Google Scholar 

  • Yang G, Ding H, Chen D et al (2016) A simple route to synthesize mesoporous titania from TiOSO4: influence of the synthesis conditions on the structural, pigments and photocatalytic properties. Appl Surf Sci 376:227–235. doi:10.1016/j.apsusc.2016.03.156

    Article  CAS  Google Scholar 

  • Zhang J, Zhou P, Liu J, Yu J (2014) New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. Phys Chem Chem Phys 16:20382–20386. doi:10.1039/C4CP02201G

    Article  CAS  Google Scholar 

  • Zhao XS, Su F, Yan Q et al (2006) Templating methods for preparation of porous structures. J Mater Chem 16:637. doi:10.1039/b513060c

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cédric B. D. Marien.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 59 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marien, C.B.D., Marchal, C., Koch, A. et al. Sol-gel synthesis of TiO2 nanoparticles: effect of Pluronic P123 on particle’s morphology and photocatalytic degradation of paraquat. Environ Sci Pollut Res 24, 12582–12588 (2017). https://doi.org/10.1007/s11356-016-7681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7681-2

Keywords

Navigation