Skip to main content
Log in

Preparation, characterization, and photocatalytic activity evaluation of Fe–N-codoped TiO2/fly ash cenospheres floating photocatalyst

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Nitrogen-doped titanium dioxide (TiO2) and Fe–N-codoped TiO2 layers on fly ash cenospheres (FAC) as floating photocatalyst were successfully prepared through sol–gel method. Photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), ultraviolet (UV)–Vis diffuse reflectance spectroscopy (DRS), and nitrogen adsorption analyses for Brunauer–Emmett–Teller (BET) specific surface area. Photocatalytic efficiency of the prepared catalyst was evaluated through using the decomposition of Rhodamine B (RhB) as a model compound under visible light irradiation. Photocatalytic activity and kinetics of catalyst under visible light were detected in details from different Fe/Ti mole ratios by detecting photodegradation of RhB. Experimental results show that when the calcination temperature was 550 °C, the dosage of FAC was 3.0 g, and the mole ratio of Fe/Ti was 0.71 %; the synthesized Fe–N-TiO2/FAC photocatalyst presented as anatase phase and that N and Fe ions were doped into TiO2 lattice. The material’s specific surface area was 34.027 m2/g, and UV–Vis diffuse reflectance spectroscopy shows that the edge of the photon absorption has been red shifted up to 400–500 nm. Fe–N-codoped titanium dioxide on FAC had excellent photocatalytic activity during the process of photodegradation of RhB under visible light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Akhavan O, Azimirad R (2009) Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation. Appl Catal A Gen 369:77–82

    Article  CAS  Google Scholar 

  • Akhavan O, Mehrabian M, Mirabbaszadeh K, Azimirad R (2009) Hydrothermal synthesis of ZnO nanorod arrays for photocatalytic inactivation of bacteria. J Phys D Appl Phys 42:225305

    Article  Google Scholar 

  • Akhavan O (2010) Thickness dependent activity of nanostructured TiO2/α-Fe2O3 photocatalyst thin films. Appl Surf Sci 257:1724–1728

    Article  CAS  Google Scholar 

  • Antoniou MG, Shoemaker JA, Cruz AA, Dionysiou DD (2008) Unveiling new degradation intermediates/pathways from the photocatalytic degradation of microcystin-LR. Environ Sci Technol 42:8877–8883

    Article  CAS  Google Scholar 

  • Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271

    Article  CAS  Google Scholar 

  • Asahi R, Morikawa T, Irie H, Ohwaki T (2014) Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: designs, developments, and prospects. Chem Rev 114:9824–9852

    Article  CAS  Google Scholar 

  • Boonprakob N, Wetchakun N, Phanichphant S, Waxler D, Sherrell P, Nattestad A, Chen J, Inceesungvorn B (2014) Enhanced visible-light photocatalytic activity of g-C3N4/TiO2 films. J Colloid Interface Sci 417:402–409

    Article  CAS  Google Scholar 

  • Choi H, Antoniou MG, Pelaez M, de la Cruz AA, Shoemaker JA, Dionysiou DD (2007) Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. Environ Sci Technol 41:7530–7535

    Article  CAS  Google Scholar 

  • Chong MN, Jin B, Chow CW, Saint C (2010) Recent developments in photocatalytic water treatment technology: a review. Water Res 44:2997–3027

    Article  CAS  Google Scholar 

  • Cong Y, Zhang J, Chen F, Anpo M, He D (2007) Preparation, photocatalytic activity, and mechanism of nano-TiO2 co-doped with nitrogen and iron (III). J Phys Chem C 111:10618–10623

    Article  CAS  Google Scholar 

  • Delekar S, Yadav H, Achary S, Meena S, Pawar S (2012) Structural refinement and photocatalytic activity of Fe-doped anatase TiO2 nanoparticles. Appl Surf Sci 263:536–545

    Article  CAS  Google Scholar 

  • Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339:44–56

    Article  CAS  Google Scholar 

  • Donohue M, Aranovich G (1998) Classification of Gibbs adsorption isotherms. Adv Colloid Interf Sci 76:137–152

    Article  Google Scholar 

  • Dozzi MV, Livraghi S, Giamello E, Selli E (2011) Photocatalytic activity of S- and F-doped TiO2 in formic acid mineralization. Photochem Photobiol Sci 10:343–349

    Article  CAS  Google Scholar 

  • Elghniji K, Atyaoui A, Livraghi S, Bousselmi L, Giamello E, Ksibi M (2012) Synthesis and characterization of Fe3+ doped TiO2 nanoparticles and films and their performance for photocurrent response under UV illumination. J Alloys Compd 541:421–427

    Article  CAS  Google Scholar 

  • Giannakas A, Seristatidou E, Deligiannakis Y, Konstantinou I (2013) Photocatalytic activity of N-doped and N–F co-doped TiO2 and reduction of chromium (VI) in aqueous solution: an EPR study. Appl Catal B Environ 132:460–468

    Article  Google Scholar 

  • Huo P, Yan Y, Li S, Li H, Huang W (2010) Floating photocatalysts of fly-ash cenospheres supported AgCl/TiO2 films with enhanced Rhodamine B photodecomposition activity. Desalination 256:196–200

    Article  CAS  Google Scholar 

  • Irie H, Watanabe Y, Hashimoto K (2003) Carbon-doped anatase TiO2 powders as a visible-light sensitive photocatalyst. Chem Lett 32:772–773

    Article  CAS  Google Scholar 

  • Kitano M, Funatsu K, Matsuoka M, Ueshima M, Anpo M (2006) Preparation of nitrogen-substituted TiO2 thin film photocatalysts by the radio frequency magnetron sputtering deposition method and their photocatalytic reactivity under visible light irradiation. J Phys Chem B 110:25266–25272

    Article  CAS  Google Scholar 

  • Li H, Hao Y, Lu H, Liang L, Wang Y, Qiu J, Shi X, Wang Y, Yao J (2015) A systematic study on visible-light N-doped TiO2 photocatalyst obtained from ethylenediamine by sol–gel method. Appl Surf Sci 344:112–118

    Article  CAS  Google Scholar 

  • Lin CJ, Liou YH, Zhang Y, Chen CL, Dong C-L, Chen S-Y, Stucky GD (2012) Mesoporous Fe-doped TiO2 sub-microspheres with enhanced photocatalytic activity under visible light illumination. Appl Catal B Environ 127:175–181

    Article  CAS  Google Scholar 

  • Liu W-X, Ma J, Qu X-G, Cao W-B (2009) Hydrothermal synthesis of (Fe, N) co-doped TiO2 powders and their photocatalytic properties under visible light irradiation. Res Chem Intermed 35:321–328

    Article  CAS  Google Scholar 

  • Magalhães F, Moura FC, Lago RM (2011) TiO2/LDPE composites: a new floating photocatalyst for solar degradation of organic contaminants. Desalination 276:266–271

    Article  Google Scholar 

  • Morikawa T, Irokawa Y, Ohwaki T (2006) Enhanced photocatalytic activity of TiO2−xNx loaded with copper ions under visible light irradiation. Appl Catal A Gen 314:123–127

    Article  CAS  Google Scholar 

  • Nanayakkara CE, Larish WA, Grassian VH (2014) Titanium dioxide nanoparticle surface reactivity with atmospheric gases, CO2, SO2 and NO2: roles of surface hydroxyl groups and adsorbed water in the formation and stability of adsorbed products. J Phys Chem C:23,011–23,021

  • Ni Y, Ge X, Liu H, Zhang Z, Ye Q, Wang F (2001) Synthesis and characterization of α-FeO (OH) nano-rods in situ via a solution-oxidation. Mater Lett 49:185–188

    Article  CAS  Google Scholar 

  • Ökte AN, Karamanis D (2013) A novel photoresponsive ZnO-flyash nanocomposite for environmental and energy applications. Appl Catal B Environ 142–143:538–552

    Article  Google Scholar 

  • Pang YL, Abdullah AZ (2012) Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water. J Hazard Mater 235–236:326–335

    Article  Google Scholar 

  • Papoulis D, Kordouli E, Lampropoulou P, Rapsomanikis A, Kordulis C, Panagiotaras D, Theophylaktou K, Stathatos E, Komarneni S (2014) Synthesis, characterization and photocatalytic activities of fly ash-TiO2 nanocomposites for the mineralization of azo dyes in water. J Surf Interfaces Mater 2:261–266

    Article  Google Scholar 

  • Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O’Shea K, Entezari MH, Dionysiou DD (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349

    Article  CAS  Google Scholar 

  • Rengaraj S, Li X (2006) Enhanced photocatalytic activity of TiO2 by doping with Ag for degradation of 2,4,6-trichlorophenol in aqueous suspension. J Mol Catal A Chem 243:60–67

    Article  CAS  Google Scholar 

  • Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann DW (2014) Understanding TiO2 photocatalysis: mechanisms and materials. Chem Rev 114:9919–9986

    Article  CAS  Google Scholar 

  • Shi J-w, Chen S-h, Wang S-m, Wu P, Xu G-h (2009) Favorable recycling photocatalyst TiO2/CFA: effects of loading method on the structural property and photocatalytic activity. J Mol Catal A Chem 303:141–147

    Article  CAS  Google Scholar 

  • Shi J-w, Chen S-h, Wang S-m, Ye Z-l, Wu P, Xu B (2010a) Favorable recycling photocatalyst TiO2/CFA: effects of calcination temperature on the structural property and photocatalytic activity. J Mol Catal A Chem 330:41–48

    Article  CAS  Google Scholar 

  • Shi J-w, Chen S-h, Ye Z-l, Wang S-m, Wu P (2010b) Favorable recycling photocatalyst TiO2/CFA: effects of loading percent of TiO2 on the structural property and photocatalytic activity. Appl Surf Sci 257:1068–1074

    Article  CAS  Google Scholar 

  • Song J, Wang X, Bu Y, Wang X, Zhang J, Huang J, Ma R, Zhao J (2016) Photocatalytic enhancement of floating photocatalyst: layer-by-layer hybrid carbonized chitosan and Fe-N-codoped TiO2 on fly ash cenospheres. Appl Surf Sci. doi:10.1016/j.apsusc.2016.04.021

    Google Scholar 

  • Turchi CS, Ollis DF (1990) Photocatalytic degradation of organic water contaminants: mechanisms involving hydroxyl radical attack. J Catal 122:178–192

    Article  CAS  Google Scholar 

  • Wang B, Li Q, Wang W, Li Y, Zhai J (2011) Preparation and characterization of Fe3+-doped TiO2 on fly ash cenospheres for photocatalytic application. Appl Surf Sci 257:3473–3479

    Article  CAS  Google Scholar 

  • Wang B, Li C, Pang J, Qing X, Zhai J, Li Q (2012a) Novel polypyrrole-sensitized hollow TiO2/fly ash cenospheres: synthesis, characterization, and photocatalytic ability under visible light. Appl Surf Sci 258:9989–9996

    Article  CAS  Google Scholar 

  • Wang C, Zhu L, Wei M, Chen P, Shan G (2012b) Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water. Water Res 46:845–853

    Article  CAS  Google Scholar 

  • Wang X, Wang W, Wang X, Zhang J, Gu Z, Zhou L, Zhao J (2015a) Enhanced visible light photocatalytic activity of a floating photocatalyst based on B–N-codoped TiO2 grafted on expanded perlite. RSC Adv 5:41385–41392

    Article  CAS  Google Scholar 

  • Wang X, Wang W, Wang X, Zhang J, Gu Z, Zhou L, Zhao J (2015b) Synthesis, structural characterization and evaluation of floating BN codoped TiO2/expanded perlite composites with enhanced visible light photoactivity. Appl Surf Sci 349:264–271

    Article  CAS  Google Scholar 

  • Xing M, Wu Y, Zhang J, Chen F (2010) Effect of synergy on the visible light activity of B, N and Fe co-doped TiO2 for the degradation of MO. Nanoscale 2:1233–1239

    Article  CAS  Google Scholar 

  • Yan HJ, Yang HX (2011) TiO2-g-C3N4 composite materials for photocatalytic H2 evolution under visible light irradiation. J Alloy Compd 509:L26–L29

    Article  CAS  Google Scholar 

  • Yang G, Jiang Z, Shi H, Xiao T, Yan Z (2010) Preparation of highly visible-light active N-doped TiO2 photocatalyst. J Mater Chem 20:5301–5309

    Article  CAS  Google Scholar 

  • Yang X, Zhang X, Ma Y, Huang Y, Wang Y, Chen Y (2009) Superparamagnetic graphene oxide–Fe3O4 nanoparticles hybrid for controlled targeted drug carriers. J Mater Chem 19:2710–2714

    Article  CAS  Google Scholar 

  • Yao B, Peng C, Zhang W, Zhang Q, Niu J, Zhao J (2015) A novel Fe(III) porphyrin-conjugated TiO2 visible-light photocatalyst. Appl Catal B Environ 174–175:77–84

    Article  Google Scholar 

  • Zhang J, Xu Q, Feng Z, Li M, Li C (2008) Importance of the relationship between surface phases and photocatalytic activity of TiO2. Angew Chem Int Ed 47:1766–1769

    Article  CAS  Google Scholar 

  • Zhang S, Zhang G, Yu S, Chen X, Zhang X (1999) Efficient photocatalytic removal of contaminant by Bi3NbxTa1−xO7 nanoparticles under visible light irradiation. J Phys Chem C 113:20029–20035

    Article  Google Scholar 

  • Zhang X, Lei L (2008) Preparation of photocatalytic Fe2O3–TiO2 coatings in one step by metal organic chemical vapor deposition. Appl Surf Sci 254:2406–2412

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 21277097, 21377095).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuejiang Wang.

Additional information

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, J., Wang, X., Bu, Y. et al. Preparation, characterization, and photocatalytic activity evaluation of Fe–N-codoped TiO2/fly ash cenospheres floating photocatalyst. Environ Sci Pollut Res 23, 22793–22802 (2016). https://doi.org/10.1007/s11356-016-7353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7353-2

Keywords

Navigation