Skip to main content
Log in

Simultaneous analysis 26 mineral element contents from highly consumed cultured chicken overexposed to arsenic trioxide by inductively coupled plasma mass spectrometry

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study assessed the impacts of dietary arsenic trioxide (As2O3) on 26 mineral element contents in the liver and kidney of chicken. A total of 100 male Hy-line cocks were randomly divided into 2 groups (50 chickens in each group), including an arsenic-treated group (basic diet supplemented with As2O3 at 30 mg/kg) and a control group (basal diet). The feeding experiment lasted for 90 days and the experimental animals were given free access to feed and water. We determined 26 mineral elements in the liver and kidney by inductively coupled plasma mass spectrometry (ICP-MS). The results showed that nine element levels (Al, Mn, Co, Cu, Zn, Se, Cd, Ba, and Pb) were significantly decreased (P < 0.05) in the liver of chickens exposed to As2O3 compared to the control chickens where three element levels (Ni, As, and Hg) increased significantly (P < 0.05). The results in the kidney showed that nine element levels (Al, K, Ca, Cr, Mn, Ni, Sb, Ba, and Pb) were significantly decreased (P < 0.05) in the chickens exposed to As2O3 compared to the control chickens where four element levels (Mo, As, Cd, and Hg) increased significantly (P < 0.05). These results suggest that supplementation of high levels of arsenic affected trace mineral levels in the liver and kidney of chicken, and the effects vary from organ to organ. The aim of this study is to provide references for further study of heavy metal poisoning by detecting the contents of minerals induced by arsenic in chicken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adeyemi JA, Da CMA, Barbosa FJ (2015) Teratogenicity, genotoxicity and oxidative stress in zebrafish embryos (Danio rerio) co-exposed to arsenic and atrazine. Comp Biochem Physiol C Toxicol Pharmacol 172-173:7–12

    Article  CAS  Google Scholar 

  • Ahmed MK, Shaheen N, Islam MS, Habibullah-al-Mamun M, Islam S, Mohiduzzaman M, Bhattacharjee L (2015) Dietary intake of trace elements from highly consumed cultured fish (Labeo rohita, Pangasius pangasius and Oreochromis mossambicus) and human health risk implications in Bangladesh. Chemosphere 128:284–292

    Article  CAS  Google Scholar 

  • Altikat S, Uysal K, Kuru HI, Kavasoglu M, Ozturk GN, Kucuk A (2015) The effect of arsenic on some antioxidant enzyme activities and lipid peroxidation in various tissues of mirror carp (Cyprinus carpio carpio). Environ Sci Pollut Res Int 22(5):3212–3218

    Article  CAS  Google Scholar 

  • Al-Waeli A, Pappas AC, Zoidis E, Georgiou CA, Fegeros K, Zervas G (2012) The role of selenium in cadmium toxicity: interactions with essential and toxic elements. Br Poult Sci 53(6):817–827

    Article  CAS  Google Scholar 

  • Aoun M, Arnaudguilhem C, El SO, Khozam RB, Lobinski R (2015) Impact of a phosphate fertilizer plant on the contamination of marine biota by heavy elements. Environ Sci Pollut Res Int 22(19):14940–14949

    Article  CAS  Google Scholar 

  • Argos M, Kalra T, Rathouz PJ, Chen Y, Pierce B, Parvez F, Islam T, Ahmed A, Rakibuz-Zaman M, Hasan R, et al. (2010) Arsenic exposure from drinking water, and all-cause and chronic-disease mortalities in Bangladesh (HEALS): a prospective cohort study. Lancet 376(9737):252–258

    Article  CAS  Google Scholar 

  • Basu A, Mahata J, Gupta S, Giri AK (2001) Genetic toxicology of a paradoxical human carcinogen, arsenic: a review. Mutat Res 488(2):171–194

    Article  CAS  Google Scholar 

  • Celik U, Oehlenschlager J (2007) High contents of cadmium, lead, zinc and copper in popular fishery products sold in Turkish supermarkets. Food Control 18:258–261

    Article  CAS  Google Scholar 

  • Chevallier E, Chekri R, Zinck J, Guérin T, Noël L (2015) Simultaneous determination of 31 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: method validation based on the accuracy profile. J Food Comp Anal 41:35–41

    Article  CAS  Google Scholar 

  • Coelho P, Costa S, Silva S, Walter A, Ranville J, Sousa AC, Costa C, Coelho M, Garcia-Leston J, Pastorinho MR, et al. (2012) Metal(loid) levels in biological matrices from human populations exposed to mining contamination—Panasqueira mine (Portugal). J Toxicol Environ Health A 75(13–15):893–908

    Article  CAS  Google Scholar 

  • Ebdon L, Pitts L, Cornelis R, Crews H, Donard OFX, Quevauviller P (2001) Trace element speciation for environment, food and health. Royal Society. Chem. Cambridge 331–353

  • Gerber N, Brogioli R, Hattendorf B, Scheeder MR, Wenk C, Gunther D (2009) Variability of selected trace elements of different meat cuts determined by ICP-MS and DRC-ICPMS. Animal 3(1):166–172

    Article  CAS  Google Scholar 

  • Giannenas I, Nisianakis P, Gavriil A, Kontopidis G, Kyriazakis I (2009) Trace mineral content of conventional, organic and courtyard eggs analysed by inductively coupled plasma mass spectrometry (ICP-MS). Food Chem 114:706–711

  • Guidotti L, Queipo AS, Rodriguez-Gonzalez P, Garcia AJ, Beone GM (2015) Quantification of Cr(VI) in soil samples from a contaminated area in northern Italy by isotope dilution mass spectrometry. Environ Sci Pollut Res Int 22(22):17569–17576

    Article  CAS  Google Scholar 

  • Guo Y, Zhao P, Guo G, Hu Z, Tian L, Zhang K, Zhang W, Xing M (2015) The role of oxidative stress in gastrointestinal tract tissues induced by arsenic toxicity in cocks. Biol Trace Elem Res 168(2):490–499

    Article  CAS  Google Scholar 

  • Harding LE, Graham M, Paton D (2005) Accumulation of selenium and lack of severe effects on productivity of American dippers (Cinclus mexicanus) and spotted sandpipers (Actitis macularia). Arch Environ Contam Toxicol 48(3):414–423

    Article  CAS  Google Scholar 

  • Hei TK, Liu SX, Waldren C (1998) Mutagenicity of arsenic in mammalian cells: role of reactive oxygen species. Proc Natl Acad Sci U S A 95(14):8103–8107

    Article  CAS  Google Scholar 

  • Jovicic K, Nikolic DM, Visnjic-Jeftic Z, Dikanovic V, Skoric S, Stefanovic SM, Lenhardt M, Hegedis A, Krpo-Cetkovic J, Jaric I (2015) Mapping differential elemental accumulation in fish tissues: assessment of metal and trace element concentrations in Wels catfish (Silurus glanis) from the Danube River by ICP-MS. Environ Sci Pollut Res Int 22(5):3820–3827

    Article  CAS  Google Scholar 

  • Li G, Sun GX, Williams PN, Nunes L, Zhu YG (2011) Inorganic arsenic in Chinese food and its cancer risk. Environ Int 37(7):1219–1225

    Article  CAS  Google Scholar 

  • Li JL, Jiang CY, Li S, Xu SW (2013) Cadmium induced hepatotoxicity in chickens (Gallus Domesticus) and ameliorative effect by selenium. Ecotoxicol Environ Saf 96:103–109

    Article  CAS  Google Scholar 

  • Lin Y, Munroe P, Joseph S, Ziolkowski A, van Zwieten L, Kimber S, Rust J (2013) Chemical and structural analysis of enhanced biochars: thermally treated mixtures of biochar, chicken litter, clay and minerals. Chemosphere 91(1):35–40

    Article  CAS  Google Scholar 

  • Liu X, Li Z, Han C, Zhang Z, Xu S (2012) Effects of dietary manganese on Cu, Fe, Zn, Ca, Se, IL-1beta, and IL-2 changes of immune organs in cocks. Biol Trace Elem Res 148(3):336–344

    Article  CAS  Google Scholar 

  • Liu X, Zhang W, Hu Y, Hu E, Xie X, Wang L, Cheng H (2015) Arsenic pollution of agricultural soils by concentrated animal feeding operations (CAFOs). Chemosphere 119:273–281

    Article  CAS  Google Scholar 

  • Liu XF, Li ZP, Tie F, Liu N, Zhang ZW, Xu SW (2013) Effects of manganese-toxicity on immune-related organs of cocks. Chemosphere 90(7):2085–2100

    Article  CAS  Google Scholar 

  • Liu Y, Guyton KZ, Gorospe M, Xu Q, Lee JC, Holbrook NJ (1996) Differential activation of ERK, JNK/SAPK and P38/CSBP/RK map kinase family members during the cellular response to arsenite. Free Radic Biol Med 21(6):771–781

    Article  CAS  Google Scholar 

  • Lynch HN, Greenberg GI, Pollock MC, Lewis AS (2014) A comprehensive evaluation of inorganic arsenic in food and considerations for dietary intake analyses. Sci Total Environ 496:299–313

    Article  CAS  Google Scholar 

  • Millour S, Noel L, Chekri R, Vastel C, Guérin T (2011) Simultaneous analysis of 21 elements in foodstuffs by ICP-MS after closed-vessel microwave digestion: method validation. J Food Compos Anal 24:111–112

    Article  CAS  Google Scholar 

  • Mondal MK, Das TK, Biswas P, Samanta CC, Bairagi B (2007) Influence of dietary inorganic and organic copper salt and level of soybean oil on plasma lipids, metabolites and mineral balance of broiler chickens. Animal Feed Sci Technol 139:212–233

    Article  CAS  Google Scholar 

  • Naraharisetti SB, Aggarwal M, Ranganathan V, Sarkar SN, Kataria M, Malik JK (2009) Effects of simultaneous repeated exposure at high levels of arsenic and malathion on hepatic drug-biotransforming enzymes in broiler chickens. Environ Toxicol Pharmacol 28(2):213–218

    Article  CAS  Google Scholar 

  • Nachman KE, Francesconi GKA, Navas-Acien A, Love DC (2012) Raber arsenic species in poultry feather meal. Sci Total Environ 417–418:183–188

    Article  Google Scholar 

  • Nisianakis P, Giannenas I, Gavriil A, Kontopidis G, Kyriazakis I (2009) Variation in trace element contents among chicken, turkey, duck, goose, and pigeon eggs analyzed by inductively coupled plasma mass spectrometry (ICP-MS). Biol Trace Elem Res 128(1):62–71

  • Papagiannis I, Kagalou I, Leonardos J, Petridis D, Kalfakakou V (2004) Copper and zinc in four freshwater fish species from Lake Pamvotis (Greece). Environ Int 30(3):357–362

    Article  CAS  Google Scholar 

  • Pappas AC, Zoidis E, Georgiou CA, Demiris N, Surai PF, Fegeros K (2011) Influence of organic selenium supplementation on the accumulation of toxic and essential trace elements involved in the antioxidant system of chicken. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 28(4):446–454

    Article  CAS  Google Scholar 

  • Pouretedal HR, Rafat M (2007) Simultaneous determination of nickel (II) and copper (II) by second-derivative spectrophotometric method in micellar media. J Chin Chem Soc 54:157–164

    Article  CAS  Google Scholar 

  • Rodriguez VM, Jimenez-Capdeville ME, Giordano M (2003) The effects of arsenic exposure on the nervous system. Toxicol Lett 145(1):1–18

    Article  CAS  Google Scholar 

  • Sanchez-Virosta P, Espin S, Garcia-Fernandez AJ, Eeva T (2015) A review on exposure and effects of arsenic in passerine birds. Sci Total Environ 512-513:506–525

    Article  CAS  Google Scholar 

  • Shah AQ, Kazi TG, Arain MB, Jamali MK, Afridi HI, Jalbani N, et al. (2009) Comparison of electrothermal and hydride generation atomic absorption spectrometry for the determination of total arsenic in broiler chicken. Food Chem 113:1351–1355

    Article  CAS  Google Scholar 

  • Sohel N, Persson LA, Rahman M, Streatfield PK, Yunus M, Ekstrom EC, Vahter M (2009) Arsenic in drinking water and adult mortality: a population-based cohort study in rural Bangladesh. Epidemiology 20(6):824–830

    Article  Google Scholar 

  • Sun B, Wang R, Li J, Jiang Z, Xu S (2011) Dietary selenium affects selenoprotein W gene expression in the liver of chicken. Biol Trace Elem Res 143(3):1516–1523

    Article  CAS  Google Scholar 

  • Tuzen M (2003) Determination of heavy metals in fish samples of the middle Black Sea (Turkey) by graphite furnace atomic absorption spectrometry. Food Chem 80:119–123

    Article  CAS  Google Scholar 

  • Uluozlu OD, Tuzen M, Mendil D, Soylak M (2009) Assessment of trace element contents of chicken products from Turkey. J Hazard Mater 163(2–3):982–987

    Article  CAS  Google Scholar 

  • Waghe P, Sarath TS, Gupta P, Kutty HS, Kandasamy K, Mishra SK, Sarkar SN (2014) Subchronic arsenic exposure through drinking water alters vascular redox homeostasis and affects physical health in rats. Biol Trace Elem Res 162(1–3):234–241

    Article  CAS  Google Scholar 

  • WHO (2010) Exposure to arsenic: a major public health concern. Geneva: WHO Press. http://www.who.int/ipcs/assessment/public_health/arsenic/en/. Accessed 23 Oct 2013

  • Xia B, Cao H, Luo J, Liu P, Guo X, Hu G, Zhang C (2015) The co-induced effects of molybdenum and cadmium on antioxidants and heat shock proteins in duck kidneys. Biol Trace Elem Res 168(1):261–268

    Article  CAS  Google Scholar 

  • Xing M, Zhao P, Guo G, Guo Y, Zhang K, Tian L, He Y, Chai H, Zhang W (2015) Inflammatory factor alterations in the gastrointestinal tract of cocks overexposed to arsenic trioxide. Biol Trace Elem Res 167(2):288–299

    Article  CAS  Google Scholar 

  • Xu T, Gao X, Liu G (2016) The antagonistic effect of selenium on lead toxicity is related to the ion profile in chicken liver. Biol Trace Elem Res 169(2):365–373

    Article  CAS  Google Scholar 

  • Yang S, Zhang Z, He J, Li J, Zhang J, Xing H, Xu S (2012) Ovarian toxicity induced by dietary cadmium in hen. Biol Trace Elem Res 148(1):53–60

    Article  CAS  Google Scholar 

  • Yuan J, Xu Z, Huang C, Zhou S, Guo Y (2011) Effect of dietary Mintrex-Zn/Mn on performance, gene expression of Zn transfer proteins, activities of Zn/Mn related enzymes and fecal mineral excretion in broiler chickens. Animal Feed Sci Technol 168:72–77

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Natural Science Foundation of Heilongjiang Province (Grant No. C2015061).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangshun Jiang or Mingwei Xing.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Responsible editor: Philippe Garrigues

Ying He and Bonan Sun contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Sun, B., Li, S. et al. Simultaneous analysis 26 mineral element contents from highly consumed cultured chicken overexposed to arsenic trioxide by inductively coupled plasma mass spectrometry. Environ Sci Pollut Res 23, 21741–21750 (2016). https://doi.org/10.1007/s11356-016-7318-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7318-5

Keywords

Navigation