Skip to main content

Advertisement

Log in

Exploring the potential of fungi isolated from PAH-polluted soil as a source of xenobiotics-degrading fungi

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aim of this study was to find polycyclic aromatic hydrocarbon (PAH)-degrading fungi adapted to polluted environments for further application in bioremediation processes. In this study, a total of 23 fungal species were isolated from a historically pyrogenic PAH-polluted soil in Spain and taxonomically identified. The dominant groups in these samples were the ones associated with fungi belonging to the Ascomycota phylum and two isolates belonging to the Mucoromycotina subphylum and Basiodiomycota phylum. We tested their ability to convert the three-ring PAH anthracene in a 42-day time course and analysed their ability to secrete extracellular oxidoreductase enzymes. Among the 23 fungal species screened, 12 were able to oxidize anthracene, leading to the formation of 9,10-anthraquinone as the main metabolite, a less toxic one than the parent compound. The complete removal of anthracene was achieved by three fungal species. In the case of Scopulariopsis brevicaulis, extracellular enzyme independent degradation of the initial 100 μM anthracene occurred, whilst in the case of the ligninolytic fungus Fomes (Basidiomycota), the same result was obtained with extracellular enzyme-dependent transformation. The yield of accumulated 9,10-anthraquinone was 80 and 91 %, respectively, and Fomes sp. could slowly deplete it from the growth medium when offered alone. These results are indicative for the effectiveness of these fungi for pollutant removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acosta-González A, Rosselló-Móra R, Marqués S (2013) Diversity of benzylsuccinate synthase-like (bssA) genes in hydrocarbon-polluted marine sediments suggests substrate-dependent clustering. Appl Environ Microbiol 79:3667–3676

    Article  Google Scholar 

  • Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opin Biotechnol 38:1–8

    Article  CAS  Google Scholar 

  • Aranda E, Kinne M, Kluge M, Ullrich R, Hofrichter M (2009) Conversion of dibenzothiophene by the mushrooms Agrocybe aegerita and Coprinellus radians and their extracellular peroxygenases. Appl Microbiol Biotechnol 82:1057–1066

    Article  CAS  Google Scholar 

  • Argumedo-Delira R, Alarcon A, Ferrera-Cerrato R, Almaraz JJ, Pena-Cabriales JJ (2012) Tolerance and growth of 11 Trichoderma strains to crude oil, naphthalene, phenanthrene and benzo[a]pyrene. J Environ Manag 95(Suppl):S291–S299

    Article  CAS  Google Scholar 

  • Atagana HI, Haynes RJ, Wallis FM (2006) Fungal bioremediation of creosote-contaminated soil: a laboratory scale bioremediation study using indigenous soil fungi. Water Air Soil Pollut 172:201–219

    Article  CAS  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia CE (1996) Mineralization of polycyclic aromatic hydrocarbons by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 62:292–295

    CAS  Google Scholar 

  • Bull AT (2004) How to look, where to look. In: AT B (ed) Microbial diversity and bioprospecting. ASM Press, Washington, DC, pp. 336–355

    Google Scholar 

  • Bumpus JA, Tien M, Wright D, Aust SD (1985) Oxidation of persistent environmental pollutants by a white rot fungus. Science 228:1434–1436

    Article  CAS  Google Scholar 

  • Capotorti G, Cesti P, Lombardi A, Guglielmetti G (2005) Formation of sulfate conjugate? Metabolites in the degradation of phenanthrene, anthracene, pyrene and benzo[a]pyrene by the ascomycete Aspergillus terreus. Polycycl Aromat Compd 25:197–213

    Article  CAS  Google Scholar 

  • Cruz-Hernández A, Tomasini-Campocosio A, Pérez-Flores LJ, Fernández-Perrino FJ, Gutiérrez-Rojas M (2013) Inoculation of seed-borne fungus in the rhizosphere of Festuca arundinacea promotes hydrocarbon removal and pyrene accumulation in roots. Plant Soil 362:261–270

    Article  Google Scholar 

  • Cueva C, Moreno-Arribas MV, Bartolomé B, Salazar O, Vicente MF, Bills G (2011) Antibiosis of vineyard ecosystem fungi against food-borne microorganisms. Res Microbiol 162:1043–1051

    Article  CAS  Google Scholar 

  • Cerniglia CE (1993) Biodegradation of polycyclic aromatic hydrocarbons. Curr Opin Biotechnol 4:331–338

    Article  CAS  Google Scholar 

  • Cerniglia CE (1997) Fungal metabolism of polycyclic aromatic hydrocarbons: past, present and future applications in bioremediation. J Ind Microbiol Biotechnol 19:324–333

    Article  CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin Heidelberg, pp. 2079–2110

    Chapter  Google Scholar 

  • Covino S, Favianová T, Křesinová Z, Čvančarová M, Burianová E, Filipová A, Vořisková J, Baldrian P, Cajthaml T (2016) Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood. J Hazard Mater 17033:17–26

    Article  Google Scholar 

  • European Parliament (2013) Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Union L226(2013):1–17

    Google Scholar 

  • Eggert C, Temp U, Dean JFD, Eriksson K-EL (1995) Laccase-mediated formation of the phenoxazinone derivative, cinnabarinic acid. FEBS Microbiol Lett 376:202–206

    Article  CAS  Google Scholar 

  • Hammel KE, Green B, Gai WZ (1991) Ring fission of anthracene by a eukaryote. Proc Natl Acad Sci 88:10605–10608

    Article  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, et al. (2007) A higher-level phylogenetic classification of the fungi. Mycol Res 111:509–547

    Article  Google Scholar 

  • Hofrichter M, Scheibner K (1993) Utilization of aromatic compounds by the Penicillium strain Bi 7/2. J Basic Microbiol 33:227–232

    Article  CAS  Google Scholar 

  • Hofrichter M, Bublitz F, Fritsche W (1994) Unspecific degradation of halogenated phenols by the soil fungus Penicillium frequentans Bi 7/2. J Basic Microbiol 34:163–172

    Article  CAS  Google Scholar 

  • Keck J, Sims RC, Coover M (1989) Evidence for cooxidation of polynuclear aromatic hydrocarbons in soil. Water Res 23:1467–1476

    Article  CAS  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger data sets. Mol Biol Evol (Advance Access published March 22, 2016)

  • Lladó S, Covino S, Solanas AM, Petruccioli M, D’Annibale A, Viñas M (2015) Pyrosequencing reveals the effect of mobilizing agents and lignocellulosic substrate amendment on microbial community composition in a real industrial PAH-polluted soil. J Hazard Mater 283:35–43

    Article  Google Scholar 

  • Machín-Ramírez C, Morales D, Martínez-Morales F, Okoh AI, Trejo-Hernández MR (2010) Benzo[a]pyrene removal by axenic- and co-cultures of some bacterial and fungal strains. Int Biodeterior Biodegrad 64:538–544

    Article  Google Scholar 

  • Marco-Urrea E, García-Romera I, Aranda E (2015) Potential of non-ligninolytic fungi in bioremediation of chlorinated and polycyclic aromatic hydrocarbons. New Biotechnol 32:620–628

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  Google Scholar 

  • Meulenberg R, Rijnaarts HHM, Doddema HJ, Field JA (1997) Partially oxidized polycyclic aromatic hydrocarbons show an increased bioavailability and biodegradability. FEMS Microbiol Lett 152:45–49

    Article  CAS  Google Scholar 

  • Mineki S, Suzuki K, Iwata K, Nakajima D, Goto S (2015) Degradation of polyaromatic hydrocarbons by fungi isolated from soil in Japan. Polycycl Aromat Compd 35:120–128

    Article  CAS  Google Scholar 

  • Muheim A, Leisola MSA, Schoemaker HE (1990) Aryl-alcohol oxidase and lignin peroxidase from the white-rot fungus Bjerkandera adusta. J Biotechnol 13:159–167

    Article  CAS  Google Scholar 

  • Pinedo-Rivilla C, Aleu J, Collado IG (2009) Pollutants biodegradation by fungi. Curr Org Chem 13:1194–1214

    Article  CAS  Google Scholar 

  • Prenafeta-Boldú FX, Summerbell R, Sybren de Hoog G (2006) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130

    Article  Google Scholar 

  • Ramesh C, Pattar MG (2009) Biodegradation of pentachlorophenol by white rot fungi isolated from forests of Western Ghats of Karnataka India. Curr Trends Biotechnol Pharm 3:417–427

    CAS  Google Scholar 

  • Reddy CA (1995) The potential for white-rot fungi in the treatment of pollutants. Curr Opin Biotechnol 6:320–328

    Article  CAS  Google Scholar 

  • Reyes-Cesar A, Absalon AE, Fernández FJ, Gonzalez JM, Cortes-Espinosa DV (2014) Biodegradation of a mixture of PAHs by non-ligninolytic fungal strains isolated from crude oil-contaminated soil. World J Microbiol Biotechnol 30:999–1009

    Article  CAS  Google Scholar 

  • Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist 18:52–59

    Article  Google Scholar 

  • Schmidt SN, Christensen JH, Johnsen AR (2010) Fungal PAH-metabolites resist mineralization by soil microorganisms. Environ Sci Technol 44:1677–1682

    Article  CAS  Google Scholar 

  • Steffen KT, Hatakka A, Hofrichter M (2002) Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl Microbiol Biotechnol 60:212–217

    Article  CAS  Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  Google Scholar 

  • Větrovský T, Baldrian P, Gabriel J (2013) Extracellular enzymes of the white-rot fungus Fomes fomentarius and purification of 1,4-β-glucosidase. Appl Biochem Biotechnol 169:100–109

    Article  Google Scholar 

  • Waksman SA (1922) A method of counting the number of fungi in the soil. J Bacteriol 7:339–341

    CAS  Google Scholar 

  • Wariishi H, Valli K, Gold MH (1992) Manganese (II) oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J Biol Chem 267:23688–23695

    CAS  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and amplifications. Academic Press, New York, pp. 315–322

    Google Scholar 

  • Wunder T, Marr J, Kremer S, Sterner O, Anke H (1997) 1-Methoxypyrene and 1,6-dimethoxypyrene: two novel metabolites in fungal metabolism of polycyclic aromatic hydrocarbons. Arch Microbiol 167:310–316

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Junta de Andalucía (project P09-CVI-4778). E. Aranda likes to thank the Ministry of Economy and Competitiveness (MINECO) and FEDER funds for co-funding the Ramón y Cajal contract (RYC-2013-12481). We also wish to thank Lourdes López Ruiz for 9,10-anthraquinone pre-experiment, Maria Angeles Delgado for the technical assistance, Juan Cristobal Romero for providing access to the sampling site, and Michael O’Shea for proofreading the document.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabet Aranda.

Additional information

Editorial Responsible: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Godoy, P., Reina, R., Calderón, A. et al. Exploring the potential of fungi isolated from PAH-polluted soil as a source of xenobiotics-degrading fungi. Environ Sci Pollut Res 23, 20985–20996 (2016). https://doi.org/10.1007/s11356-016-7257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7257-1

Keywords

Navigation