Skip to main content
Log in

Benchmark dose for cadmium exposure and elevated N-acetyl-β-d-glucosaminidase: a meta-analysis

Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) is a well-known nephrotoxic contaminant, and N-acetyl-β-d-glucosaminidase (NAG) is considered to be an early and sensitive marker of tubular dysfunction. The link between Cd exposure and NAG level enables us to derive the benchmark dose (BMD) of Cd. Although several reports have already documented urinary Cd (UCd)-NAG relationships and BMD estimations, high heterogeneities arise due to the sub-populations (age, gender, and ethnicity) and BMD methodologies being employed. To clarify the influences that these variables exert, firstly, a random effect meta-analysis was performed in this study to correlate the UCd and NAG based on 92 datasets collected from 30 publications. Later, this established correlation (Ln(NAG) = 0.51 × Ln(UCd) + 0.83) was applied to derive the UCd BMD5 of 1.76 μg/g creatinine and 95 % lower confidence limit of BMD5 (BMDL5) of 1.67 μg/g creatinine. While the regressions for different age groups and genders differed slightly, it is age and not gender that significantly affects BMD estimations. Ethnic differences may require further investigation given that limited data is currently available. Based on a comprehensive and systematic literature review, this study is a new attempt to quantify the UCd-NAG link and estimate BMD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Abbreviations

NAG:

N-acetyl-β-d-glucosaminidase

Cd:

Cadmium

BMD:

Benchmark dose

BMDL:

95 % lower confidence limit of Benchmark Dose

UCd:

Urinary cadmium

BMR:

Benchmark response

β2-MG:

β2-microglobulin

ALB:

Albumin

cr:

Creatinine

AM:

Arithmetic mean

SD:

Standard derivation

GM:

Geometric mean

GSD:

Geometric standard derivation

ESM:

Electronic supplementary material

References

  • Amzal B, Julin B, Vahter M, Wolk A, Johanson G, Åkesson A (2009) Population toxicokinetic modeling of cadmium for health risk assessment. Environ Health Perspect 117:1293–1301

    Article  CAS  Google Scholar 

  • Arcella D, Cappe S, Fabiansson S, di Domenico A, Furst P (2012) Cadmium dietary exposure in the European population. Eur Food Saf Authority (EFSA) 10:2551

    Google Scholar 

  • ATSDR (2012) Toxicological profile for chromium. Agency for toxic substances and disease registry. Public Health Service, US Department of Health and Human Services

    Google Scholar 

  • Axelrad DA, Bellinger DC, Ryan LM, Woodruff TJ (2007) Dose-response relationship of prenatal mercury exposure and IQ: an integrative analysis of epidemiologic data. Environ Health Perspect 115:609–615

    Article  Google Scholar 

  • Bernard A, Thielemans N, Roels H, Lauwerys R (1995) Association between NAG-B and cadmium in urine with no evidence of a threshold. Occup Environ Med 52:177–180

    Article  CAS  Google Scholar 

  • Chen L, Jin T, Huang B, Nordberg G, Nordberg M (2006) Critical exposure level of cadmium for elevated urinary metallothionein—an occupational population study in China. Toxicol Appl Pharmacol 215:93–99

    Article  CAS  Google Scholar 

  • Crump K (2002) Critical issues in benchmark calculations from continuous data. Crit Rev Toxicol 32:133–153

    Article  CAS  Google Scholar 

  • Davis JA, Gift JS, Zhao QJ (2011) Introduction to benchmark dose methods and US EPA’s benchmark dose software (BMDS) version 2.1. 1. Toxicol Appl Pharmacol 254:181–191

    Article  CAS  Google Scholar 

  • Dong Z, Hu J (2011) Development of lead source-specific exposure standards based on aggregate exposure assessment: Bayesian inversion from biomonitoring information to multipathway exposure. Environ Sci Technol 46:1144–1152

    Article  Google Scholar 

  • Dong Z, Liu Y, Duan L, Bekele D, Naidu R (2015) Uncertainties in human health risk assessment of environmental contaminants: a review and perspective. Environ Int 85:120–132

    Article  CAS  Google Scholar 

  • EFSA (2009) Meta-analysis of dose-effect relationship of cadmium for benchmark dose evaluation. EFSA Scientific Report 254:1–62

    Google Scholar 

  • Friberg L, Elinder C-G, Kjellström T, Nordberg G (1986) Cadmium and health: a toxicological and epidemiological appraisal, 2. CRC Press, Boca Raton

    Google Scholar 

  • Honda R, Swaddiwudhipong W, Nishijo M, Mahasakpan P, Teeyakasem W, Ruangyuttikarn W, Satarug S, Padungtod C, Nakagawa H (2010) Cadmium induced renal dysfunction among residents of rice farming area downstream from a zinc-mineralized belt in Thailand. Toxicol Lett 198:26–32

    Article  CAS  Google Scholar 

  • Hong F, Jin T, Zhang A (2004) Risk assessment on renal dysfunction caused by co-exposure to arsenic and cadmium using benchmark dose calculation in a Chinese population. Biometals Int J Role Met Ions Biol Biochem Med 17:573–580

    Article  CAS  Google Scholar 

  • Ikeda M, Ezaki T, Tsukahara T, Moriguchi J (2004) Dietary cadmium intake in polluted and non-polluted areas in Japan in the past and in the present. Int Arch Occup Environ Health 77:227–234

    Article  CAS  Google Scholar 

  • Järup L (2002) Cadmium overload and toxicity. Nephrol Dial Transplant 17:35–39

    Article  Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  Google Scholar 

  • Järup L, Carlsson MD, Elinder CG, Hellström L, Persson B, Schütz A (1995) Enzymuria in a population living near a cadmium battery plant. Occup Environ Med 52:770–772

    Article  Google Scholar 

  • Jin T, Nordberg G, Wu X, Ye T, Kong Q, Wang Z, Zhuang F, Cai S (1999) Urinary N-acetyl-β-D-glucosaminidase isoenzymes as biomarker of renal dysfunction caused by cadmium in a general population. Environ Res 81:167–173

    Article  CAS  Google Scholar 

  • Jin T, Kong Q, Ye T, Wu X, Nordberg GF (2004a) Renal dysfunction of cadmium-exposed workers residing in a cadmium-polluted environment. Biometals 17:513–518(6)

    Article  CAS  Google Scholar 

  • Jin T, Wu X, Tang Y, Nordberg M, Bernard A, Ye T, Kong Q, Lundström NG, Nordberg GF (2004b) Environmental epidemiological study and estimation of benchmark dose for renal dysfunction in a cadmium-polluted area in China. Biometals Int J Role Met Ions Biol Biochem Med 17:525–530

    Article  CAS  Google Scholar 

  • Jung K, Pergande M, Graubaum HJ, Fels LM, Endl U, Stolte H (1993) Urinary proteins and enzymes as early indicators of renal dysfunction in chronic exposure to cadmium. Clin Chem 39:757–765

    CAS  Google Scholar 

  • Kobayashi E, Suwazono Y, Uetani M, Inaba T, Oishi M, Kido T, Nishijo M, Nakagawa H, Nogawa K (2006a) Estimation of benchmark dose for renal dysfunction in a cadmium non-polluted area in Japan. J Appl Toxicol 26:351–355

    Article  CAS  Google Scholar 

  • Kobayashi E, Suwazono Y, Uetani M, Inaba T, Oishi M, Kido T, Nishijo M, Nakagawa H, Nogawa K (2006b) Estimation of benchmark dose as the threshold levels of urinary cadmium, based on excretion of total protein, β 2-microglobulin, and N-acetyl-β-d-glucosaminidase in cadmium nonpolluted regions in Japan. Environ Res 101:401–406

    Article  CAS  Google Scholar 

  • Kodell RL, West RW (1993) Upper confidence limits on excess risk for quantitative responses. Risk Anal 13:177–182

    Article  CAS  Google Scholar 

  • Lei LJ, Chen L, Jin TY, Nordberg M, Chang XL (2007) Estimation of benchmark dose for pancreatic damage in cadmium-exposed smelters. Toxicol Sci 97:189–195

    Article  CAS  Google Scholar 

  • Mason HJ, Davison AG, Wright AL, Guthrie CJ, Fayers PM, Venables KM, Smith NJ, Chettle DR, Franklin DM, Scott MC (1988) Relations between liver cadmium, cumulative exposure, and renal function in cadmium alloy workers. Br J Ind Med 45:793–802

    CAS  Google Scholar 

  • Moriguchi J, Inoue Y, Kamiyama S, Horiguchi M, Murata K, Sakuragi S, Fukui Y, Ohashi F, Ikeda M (2009) N-Acetyl-β-d-glucosaminidase (NAG) as the most sensitive marker of tubular dysfunction for monitoring residents in non-polluted areas. Toxicol Lett 190:1–8

    Article  CAS  Google Scholar 

  • Nakadaira H, Nishi S (2003) Effects of low-dose cadmium exposure on biological examinations. Sci Total Environ 308:49–62

    Article  CAS  Google Scholar 

  • Noonan CW, Sarasua SM, Campagna D, Kathman SJ, Lybarger JA, Mueller PW (2002) Effects of exposure to low levels of environmental cadmium on renal biomarkers. Environ Health Perspect 110:151–155

    Article  CAS  Google Scholar 

  • Olsson M, Bensryd I, Lundh T, Ottosson H, Skerfving S, Oskarsson A (2002) Cadmium in blood and urine—impact of sex, age, dietary intake, iron status, and former smoking—association of renal effects. Environ Health Perspect 110:1185–1190

    Article  CAS  Google Scholar 

  • Reeves PG, Vanderpool RA (1997) Cadmium burden of men and women who report regular consumption of confectionery sunflower kernels containing a natural abundance of cadmium. Environ Health Perspect 105:1098–104

    Article  CAS  Google Scholar 

  • Suwazono Y, Kobayashi E, Okubo Y, Nogawa K, Kido T, Nakagawa H (2000) Renal effects of cadmium exposure in cadmium nonpolluted areas in Japan. Environ Res 84:44–55

    Article  CAS  Google Scholar 

  • Suwazono Y, Sand S, Vahter M, Filipsson AF, Skerfving S, Lidfeldt J, Åkesson A (2006) Benchmark dose for cadmium-induced renal effects in humans. Environ Health Perspect 114:1072–1076

    Article  CAS  Google Scholar 

  • Suwazono Y, Nogawa K, Uetani M, Kido T, Nakagawa H (2011a) Reassessment of the threshold of urinary cadmium by using hybrid approach in a cadmium non-polluted area in Japan. Int J Hyg Environ Health 214:175–178

    Article  CAS  Google Scholar 

  • Suwazono Y, Nogawa K, Uetani M, Miura K, Sakata K, Okayama A, Ueshima H, Stamler J, Nakagawa H (2011b) Application of hybrid approach for estimating the benchmark dose of urinary cadmium for adverse renal effects in the general population of Japan. J Appl Toxicol 31:89–93

    Article  CAS  Google Scholar 

  • Thun MJ, Osorio AM, Schober S, Hannon WH, Lewis B, Halperin W (1989) Nephropathy in cadmium workers: assessment of risk from airborne occupational exposure to cadmium. Br J Ind Med 46:689–697

    CAS  Google Scholar 

  • Uno T, Kobayashi E, Suwazono Y, Okubo Y, Miura K, Sakata K, Okayama A, Ueshima H, Nakagawa H, Nogawa K (2005) Health effects of cadmium exposure in the general environment in Japan with special reference to the lower limit of the benchmark dose as the threshold level of urinary cadmium. Scand J Work Environ Health 31:307–315

    Article  CAS  Google Scholar 

  • Wheeler MW (2005) Benchmark dose estimation using SAS®. SAS® Users Group International (SUGI) 30, Paper 201–230

  • Whitehead A (2002) Meta-analysis of controlled clinical trials. John Wiley and Sons Inc, Chichester, England

  • Woo HD, Chiu WA, Jo S, Kim J (2015) Benchmark dose for urinary cadmium based on a marker of renal dysfunction: a meta-analysis. Plos ONE 10:1–12

    Google Scholar 

  • Xu T, White L, Hui D, Luo Y (2006) Probabilistic inversion of a terrestrial ecosystem model: analysis of uncertainty in parameter estimation and model prediction. Global Biogeochem Cycles 20, GB2007

    Article  Google Scholar 

  • Yuan X, Wang J, Shang YE, Sun B (2014) Health risk assessment of cadmium via dietary intake by adults in China. J Sci Food Agric 94:373–380

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE) and the Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (Grant No 14KJD610001) for the funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhaoMin Dong.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Literature data (CSV 5 kb)

ESM 2

Supplementary Material (DOC 234 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, Y., Zhu, C. et al. Benchmark dose for cadmium exposure and elevated N-acetyl-β-d-glucosaminidase: a meta-analysis. Environ Sci Pollut Res 23, 20528–20538 (2016). https://doi.org/10.1007/s11356-016-7214-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7214-z

Keywords

Navigation