Skip to main content
Log in

Photocatalytic degradation of furfural in aqueous solution by N-doped titanium dioxide nanoparticles

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The photocatalytic degradation of furfural in aqueous solution was investigated using N-doped titanium dioxide nanoparticles under sunlight and ultraviolet radiation (N-TiO2/Sun and N-TiO2/UV) in a lab-scale batch photoreactor. The N-TiO2 nanoparticles prepared using a sol-gel method were characterized using XRD, X-ray photoelectron spectroscopy (XPS), and SEM analyses. Using HPLC to monitor the furfural concentration, the effect of catalyst dosage, contact time, initial solution pH, initial furfural concentration, and sunlight or ultraviolet radiation on the degradation efficiency was studied. The efficiency of furfural removal was found to increase with increased reaction time, nanoparticle loading, and pH for both processes, whereas the efficiency decreased with increased furfural concentration. The maximum removal efficiencies for the N-TiO2/UV and N-TiO2/Sun processes were 97 and 78 %, respectively, whereas the mean removal efficiencies were 80.71 ± 2.08 % and 62.85 ± 2.41 %, respectively. In general, the degradation and elimination rate of furfural using the N-TiO2/UV process was higher than that using the N-TiO2/Sun process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Akhavan O, Ghaderi E (2009) Photocatalytic reduction of graphene oxide nanosheets on TiO2 thin film for photoinactivation of bacteria in solar light irradiation. J Phys Chem C 113:20214–20220. doi:10.1021/jp906325q

    Article  CAS  Google Scholar 

  • Akhavan O, Ghaderi E, Rahimi K (2012) Adverse effects of graphene incorporated in TiO2 photocatalyst on minuscule animals under solar light irradiation. J Mater Chem 22:23260–23266. doi:10.1039/C2JM35228A

    Article  CAS  Google Scholar 

  • Anbia M, Mohammadi N (2009) A nanoporous adsorbent for removal of furfural from aqueous solutions. Desalination 249:150–153 doi:http://dx.doi.org/10.1016/j.desal.2008.06.027

  • Anbia M, Mohammadi N, Mohammadi K (2010) Fast and efficient mesoporous adsorbents for the separation of toxic compounds from aqueous media. J Hazard Mater 176:965–972 doi:http://dx.doi.org/10.1016/j.jhazmat.2009.11.135

  • Ansari SA, Khan MM, Ansari MO, Cho MH (2016) Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. New J Chem 40:3000–3009. doi:10.1039/C5NJ03478G

    Article  CAS  Google Scholar 

  • APHA (2005) Standard methods for the examination of water and wastewater. American public health association, 22nd edn. American Public Health Association, Washington, D.C.

  • Asl SK, Sadrnezhaad SK, Rad MK, ¨Uner D (2012) Comparative photodecolorization of red dye by anatase, rutile (TiO 2 ), and wurtzite (ZnO) using response surface methodology. Turk J Chem 36:121–135

    CAS  Google Scholar 

  • Borghei SM, Hosseini SN (2008) Comparison of furfural degradation by different photooxidation methods. Chem Eng J 139:482–488 doi:http://dx.doi.org/10.1016/j.cej.2007.08.020

  • Buzby S, Barakat MA, Lin H, Ni C, Rykov SA, Chen JG, Ismat Shah S (2006) Visible light photocatalysis with nitrogen-doped titanium dioxide nanoparticles prepared by plasma assisted chemical vapor deposition. J Vac Sci Technol B 24:1210–1214 doi:doi:http://dx.doi.org/10.1116/1.2192544

  • Chen L et al. (2006) Photocatalytic activity of epoxide sol–gel derived titania transformed into nanocrystalline aerogel powders by supercritical drying. J Mol Catal A Chem 255:260–268 doi:http://dx.doi.org/10.1016/j.molcata.2006.04.043

  • Chen X, Mao SS (2007) Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev 107:2891–2959

    Article  CAS  Google Scholar 

  • Cheng X, Yu X, Xing Z (2012) Characterization and mechanism analysis of N doped TiO2 with visible light response and its enhanced visible activity. Appl Surf Sci 258:3244–3248. doi:10.1016/j.apsusc.2011.11.072

    Article  CAS  Google Scholar 

  • Chiou C-H, Juang R-S (2007) Photocatalytic degradation of phenol in aqueous solutions by Pr-doped TiO2 nanoparticles. J Hazard Mater 149:1–7. doi:10.1016/j.jhazmat.2007.03.035

    Article  CAS  Google Scholar 

  • Cuevas M, Quero SM, Hodaifa G, López AJM, Sánchez S (2014) Furfural removal from liquid effluents by adsorption onto commercial activated carbon in a batch heterogeneous reactor. Ecol Eng 68:241–250. doi:10.1016/j.ecoleng.2014.03.017

    Article  Google Scholar 

  • Di Valentin C, Finazzi E, Pacchioni G, Selloni A, Livraghi S, Paganini MC, Giamello E (2007) N-doped TiO2: theory and experiment. Chem Phys 339:44–56. doi:10.1016/j.chemphys.2007.07.020

    Article  Google Scholar 

  • Faramarzpour M, Vossoughi M, Borghei M (2009) Photocatalytic degradation of furfural by titania nanoparticles in a floating-bed photoreactor. Chem Eng J 146:79–85. doi:10.1016/j.cej.2008.05.033

    Article  CAS  Google Scholar 

  • Ghosh UK, Pradhan NC, Adhikari B (2007) Separation of furfural from aqueous solution by pervaporation using HTPB-based hydrophobic polyurethaneurea membranes. Desalination 208:146–158. doi:10.1016/j.desal.2006.04.078

    Article  CAS  Google Scholar 

  • Ghosh UK, Pradhan NC, Adhikari B (2010) Pervaporative separation of furfural from aqueous solution using modified polyurethaneurea membrane. Desalination 252:1–7. doi:10.1016/j.desal.2009.11.009

    Article  CAS  Google Scholar 

  • Jamil TS, Ghaly MY, Fathy NA, Ab del-halim TA, Österlund L (2012) Enhancement of TiO2 behavior on photocatalytic oxidation of MO dye using TiO2/AC under visible irradiation and sunlight radiation. Sep Purif Technol 98:270–279. doi:10.1016/j.seppur.2012.06.018

    Article  CAS  Google Scholar 

  • Jang S-J, Kim M-S, Kim B-W (2005) Photodegradation of DDT with the photodeposited ferric ion on the TiO2 film. Water Res 39:2178–2188

    Article  CAS  Google Scholar 

  • Janitabar Darzi S, Mahjoub AR, Bayat A (2015) Synthesis and characterization of visible light active S-doped TiO2 nanophotocatalyst. Int J Nano Dimens 7:33–40. doi:10.7508/ijnd.2016.01.004

    Google Scholar 

  • Khan MM, Ansari SA, Pradhan D, Ansari MO, Lee J, Cho MH (2014) Band gap engineered TiO 2 nanoparticles for visible light induced photoelectrochemical and photocatalytic studies. J Mater Chem A 2:637–644

    Article  CAS  Google Scholar 

  • Khanna A, Shetty VK (2014) Solar light induced photocatalytic degradation of reactive blue 220 (RB-220) dye with highly efficient Ag@TiO2 core–shell nanoparticles: a comparison with UV photocatalysis. Sol Energy 99:67–76. doi:10.1016/j.solener.2013.10.032

    Article  CAS  Google Scholar 

  • Kim M-S, Ryu CS, Kim B-W (2005) Effect of ferric ion added on photodegradation of alachlor in the presence of TiO2 and UV radiation. Water Res 39:252–232

    Google Scholar 

  • Lee J-C, Kim M-S, Kim B-W (2002) Removal of paraquat dissolved in a photoreactor with TiO2 immobilized on the glass-tubes of UV lamps. Water Res 36:1776–1782. doi:10.1016/S0043-1354(01)00378-5

    Article  CAS  Google Scholar 

  • Li X, Wang L, Lu X (2010) Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation. J Hazard Mater 177:639–647. doi:10.1016/j.jhazmat.2009.12.080

    Article  CAS  Google Scholar 

  • Liu H, Zhou Y, Huang H, Feng Y (2011) Phthalic acid modified TiO2 and enhanced photocatalytic reduction activity for Cr(VI) in aqueous solution. Desalination 278:434–437. doi:10.1016/j.desal.2011.05.037

    Article  CAS  Google Scholar 

  • Liu L, Liu Z, Bai H, Sun DD (2012) Concurrent filtration and solar photocatalytic disinfection/degradation using high-performance Ag/TiO2 nanofiber membrane. Water Res 46:1101–1112. doi:10.1016/j.watres.2011.12.009

    Article  CAS  Google Scholar 

  • Matsubara K, Danno M, Inoue M, Honda Y, Abe T (2012) Characterization of nitrogen-doped TiO2 powder prepared by newly developed plasma-treatment system. Chem Eng J 181–182:754–760. doi:10.1016/j.cej.2011.11.075

    Article  Google Scholar 

  • Mesgari Z, Gharagozlou M, Khosravi A, Gharanjig K (2012) Spectrophotometric studies of visible light induced photocatalytic degradation of methyl orange using phthalocyanine-modified Fe-doped TiO2 nanocrystals. Spectrochim Acta A Mol Biomol Spectrosc 92:148–153. doi:10.1016/j.saa.2012.02.055

    Article  CAS  Google Scholar 

  • Montgomery DC (2007) Design and analysis of experiments, 6th edn. John Wiley, Malden

    Google Scholar 

  • Nawi MA, Jawad AH, Sabar S, Ngah WSW (2011) Immobilized bilayer TiO2/chitosan system for the removal of phenol under irradiation by a 45 watt compact fluorescent lamp. Desalination 280:288–296. doi:10.1016/j.desal.2011.07.013

    Article  CAS  Google Scholar 

  • Nezamzadeh-Ejhieh A, Moeinirad S (2011) Heterogeneous photocatalytic degradation of furfural using NiS-clinoptilolite zeolite. Desalination 273:248–257. doi:10.1016/j.desal.2010.12.031

    Article  CAS  Google Scholar 

  • Pang YL, Abdullah AZ (2012) Effect of low Fe3+ doping on characteristics, sonocatalytic activity and reusability of TiO2 nanotubes catalysts for removal of Rhodamine B from water. J Hazard Mater 235–236:326–335. doi:10.1016/j.jhazmat.2012.08.008

    Article  Google Scholar 

  • Qi B, Luo J, Chen X, Hang X, Wan Y (2011) Separation of furfural from monosaccharides by nanofiltration. Bioresour Technol 102:7111–7118. doi:10.1016/j.biortech.2011.04.041

    Article  CAS  Google Scholar 

  • Qiu X, Zhao Y, Burda C (2007) Synthesis and characterization of nitrogen-doped group IVB visible-light-photoactive metal oxide nanoparticles. Adv Mater 19:3995–3999. doi:10.1002/adma.200700511

    Article  CAS  Google Scholar 

  • Rai AK et al. (2013) Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries. Electrochim Acta 90:112–118. doi:10.1016/j.electacta.2012.11.104

    Article  CAS  Google Scholar 

  • Rauf MA, Ashraf SS (2009) Radiation induced degradation of dyes—an overview. J Hazard Mater 166:6–16. doi:10.1016/j.jhazmat.2008.11.043

    Article  CAS  Google Scholar 

  • Sahu A (2008) Adsorption of furfural from aqueous solution onto activated carbon: kinetic equilibrium and thermodynamic study. Sep Sci Technol 43:1239–1259

    Article  CAS  Google Scholar 

  • Satyro S et al. (2014) Removal of EDDS and copper from waters by TiO2 photocatalysis under simulated UV–solar conditions. Chem Eng J 251:257–268. doi:10.1016/j.cej.2014.04.066

    Article  CAS  Google Scholar 

  • Scarisoreanu M et al. (2013) Structural evolution and optical properties of C-coated TiO2 nanoparticles prepared by laser pyrolysis. Appl Surf Sci 278:295–300. doi:10.1016/j.apsusc.2013.01.052

    Article  CAS  Google Scholar 

  • Singh S, Srivastava VC, Mall ID (2009) Fixed-bed study for adsorptive removal of furfural by activated carbon. Colloids Surf A Physicochem Eng Asp 332:50–56. doi:10.1016/j.colsurfa.2008.08.025

    Article  CAS  Google Scholar 

  • Tang Q, Lin J, Wu Z, Wu J, Huang M, Yang Y (2007) Preparation and photocatalytic degradability of TiO2/polyacrylamide composite. Eur Polym J 43:2214–2220. doi:10.1016/j.eurpolymj.2007.01.054

    Article  CAS  Google Scholar 

  • Wu X, Song Q, Jia L, Li Q, Yang C, Lin L (2012) Pd-Gardenia-TiO2 as a photocatalyst for H2 evolution from pure water. Int J Hydrog Energy 37:109–114. doi:10.1016/j.ijhydene.2011.09.064

    Article  Google Scholar 

  • Yao F, Müller H-G (2010) Functional quadratic regression. Biometrika 97:49–64

    Article  Google Scholar 

  • Yupapin DP, Pivsa-Art DS, Ohgaki DH, Chainarong S, Sikong L, Pavasupree S, Niyomwas S (2011) 9th eco-energy and materials science and engineering symposium synthesis and characterization of nitrogen-doped TiO2 nanomaterials for photocatalytic activities under visible light. Energy Procedia 9:418–427. doi:10.1016/j.egypro.2011.09.046

    Article  Google Scholar 

  • Zazouli MA, Ebrahimzadeh MA, Yazdani Charati J, Shiralizadeh Dezfoli A, Rostamali E, Veisi F (2013) Effect of sunlight and ultraviolet radiation in the titanium dioxide (TiO2) nanoparticles for removal of furfural from water. J Mazandaran Univ Med Sci 23:126–138

    Google Scholar 

  • Zhang H, Zhu H (2012) Preparation of Fe-doped TiO2 nanoparticles immobilized on polyamide fabric. Appl Surf Sci 258:10034–10041. doi:10.1016/j.apsusc.2012.06.069

    Article  CAS  Google Scholar 

  • Zhang D, Ong YL, Li Z, Wu JC (2013a) Biological detoxification of furfural and 5-hydroxyl methyl furfural in hydrolysate of oil palm empty fruit bunch by Enterobacter sp. FDS8. Biochem Eng J 72:77–82. doi:10.1016/j.bej.2013.01.003

    Article  CAS  Google Scholar 

  • Zhang M, Wu J, Hou J, Yang J (2013b) Molybdenum and nitrogen co-doped titanium dioxide nanotube arrays with enhanced visible light photocatalytic activity. Sci Adv Mater 5:535–541

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to express their thanks to the laboratory staff of the Department of Environmental Health Engineering, Faculty of Health, and Health Sciences Research Center for their collaboration and to the Research Deputy of Mazandaran University of Medical Sciences for the financial support of this study (Project No:92-1). We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Ali Zazouli.

Additional information

Responsible editor: Suresh Pillai

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veisi, F., Zazouli, M.A., Ebrahimzadeh, M.A. et al. Photocatalytic degradation of furfural in aqueous solution by N-doped titanium dioxide nanoparticles. Environ Sci Pollut Res 23, 21846–21860 (2016). https://doi.org/10.1007/s11356-016-7199-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7199-7

Keywords

Navigation