Skip to main content

Advertisement

Log in

Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption

Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Greywater (GW) is a potential source for water reuse in various applications. However, GW treatment is still a vital issue in water reuse in cases of environmental standards and risk to public health. This study investigates optimization and modeling of a hybrid process for COD removal from GW. Persulfate (PS) was simultaneously activated by electrogenerated ferrous ion (EC) and UV to generate sulfate radical. Photoelectro-persulfate (PEPS) was optimized by Box-Behnken design and the effects of four variables (pH, PS dosage, current density, and electrolysis time) were evaluated on COD removal. The results and several coefficients showed that the obtained model was acceptable for predicting the COD removal. Moreover, under optimum conditions (pH = 6.9, PS = 8.8 mM, current density = 2.0 mA/cm2, and 49.3 min electrolysis time), BOD5, turbidity, TSS, phosphate, and UV254 were effectively removed and COD and BOD5 values reached to discharge standards. Different configurations of the processes were assessed for COD removal. The order of COD removal efficiency followed: PS < Fe(II) < UV/PS ≤ Fe(II)/PS < Fe(II)/PS/UV < electrocoagulation ≤ electrocoagulation/UV < electro-PS < PEPS. The monitoring PS concentration during 60 min reaction time in the aforesaid processes indicated that PEPS could remarkably activate PS. The solution pH was also monitored and related results revealed that the presence of PS during the 10 min first time decreased pH value while production of hydroxide ion at cathode increased pH significantly. Finally, the contribution of electrochemical process in the electrical energy consumption was far less than that of photolysis process in hybrid PEPS process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  • Ahmadi M, Amiri H, Martínez SS (2012) Treatment of phenol-formaldehyde resin manufacturing wastewater by the electrocoagulation process. Desalin Water Treat 39(1–3):176–181. doi:10.1080/19443994.2012.669172

    Article  CAS  Google Scholar 

  • Ahmadi M, Ghanbari F, Moradi M (2015) Photocatalysis assisted by peroxymonosulfate and persulfate for benzotriazole degradation: effect of pH on sulfate and hydroxyl radicals. Water Sci Technol 72(11):2095–2102. doi:10.2166/wst.2015.437

    Article  CAS  Google Scholar 

  • Ahmadi M, Ghanbari F, Madihi-Bidgoli S (2016) Photoperoxi-coagulation using activated carbon fiber cathode as an efficient method for benzotriazole removal from aqueous solutions: modeling, optimization and mechanism. J Photochem Photobiol A Chem 322–323:85–94. doi:10.1016/j.jphotochem.2016.02.025

    Article  Google Scholar 

  • Akbari S, Ghanbari F, Moradi M (2016) Bisphenol A degradation in aqueous solutions by electrogenerated ferrous ion activated ozone, hydrogen peroxide and persulfate: applying low current density for oxidation mechanism. Chem Eng J 294:298–307. doi:10.1016/j.cej.2016.02.106

    Article  CAS  Google Scholar 

  • Al-Jayyousi OR (2003) Greywater reuse: towards sustainable water management. Desalination 156(1–3):181–192. doi:10.1016/S0011-9164(03)00340-0

    Article  CAS  Google Scholar 

  • APHA (1999) Standard methods for the examination of water and wastewater, 20th edn. APHA, Washington DC

    Google Scholar 

  • Bani-Melhem K, Smith E (2012) Grey water treatment by a continuous process of an electrocoagulation unit and a submerged membrane bioreactor system. Chem Eng J 198–199:201–210. doi:10.1016/j.cej.2012.05.065

    Article  Google Scholar 

  • Boyjoo Y, Pareek VK, Ang M (2013) A review of greywater characteristics and treatment processes. Water Sci Technol 67(7):1403–1424. doi:10.2166/wst.2013.675

    Article  CAS  Google Scholar 

  • Chin WH, Roddick FA, Harris JL (2009) Greywater treatment by UVC/H2O2. Water Res 43(16):3940–3947. doi:10.1016/j.watres.2009.06.050

    Article  CAS  Google Scholar 

  • Chong MN, Cho YJ, Poh PE, Jin B (2015) Evaluation of titanium dioxide photocatalytic technology for the treatment of reactive black 5 dye in synthetic and real greywater effluents. J Clean Prod 89:196–202. doi:10.1016/j.jclepro.2014.11.014

    Article  CAS  Google Scholar 

  • DOE (2001) Rules and regulations for environmental protection in Iran, Second edn. Department of the Environment, Tehran

    Google Scholar 

  • Friedler E, Kovalio R, Ben-Zvi A (2006) Comparative study of the microbial quality of greywater treated by three on-site treatment systems. Environ Technol 27(6):653–663. doi:10.1080/09593332708618674

    Article  CAS  Google Scholar 

  • Ghafoori S, Mehrvar M, Chan P (2014) Optimisation of photo-Fenton-like degradation of aqueous polyacrylic acid using Box-Behnken experimental design. Can J Chem Eng 92(1):97–108. doi:10.1002/cjce.21849

    Article  CAS  Google Scholar 

  • Ghaitidak DM, Yadav KD (2013) Characteristics and treatment of greywater—a review. Environ Sci Pollut Res 20(5):2795–2809. doi:10.1007/s11356-013-1533-0

    Article  CAS  Google Scholar 

  • Ghanbari F, Moradi M, Eslami A, Emamjomeh MM (2014a) ) Electrocoagulation/flotation of textile wastewater with simultaneous application of aluminum and iron as anode. Environ Process 1(4):447–457. doi:10.1007/s40710-014-0029-3

    Article  Google Scholar 

  • Ghanbari F, Moradi M, Mohseni-Bandpei A, Gohari F, Mirtaleb Abkenar T, Aghayani E (2014b) Simultaneous application of iron and aluminum anodes for nitrate removal: a comprehensive parametric study. Int J Environ Sci Technol 11(6):1653–1660. doi:10.1007/s13762-014-0587-y

    Article  CAS  Google Scholar 

  • Grčić I, Vrsaljko D, Katančić Z, Papić S (2015) Purification of household greywater loaded with hair colorants by solar photocatalysis using TiO2-coated textile fibers coupled flocculation with chitosan. J Water Process Eng 5:15–27. doi:10.1016/j.jwpe.2014.12.008

    Article  Google Scholar 

  • Hazime R, Nguyen QH, Ferronato C, Salvador A, Jaber F, Chovelon JM (2014) Comparative study of imazalil degradation in three systems: UV/TiO2, UV/K2S2O8 and UV/TiO2/K2S2O8. Appl Catal, B 144:286–291. doi:10.1016/j.apcatb.2013.07.001

    Article  CAS  Google Scholar 

  • Hernández Leal L, Zeeman G, Temmink H, Buisman C (2007) Characterisation and biological treatment of greywater. Water Sci Technol 56(5):193–200. doi:10.2166/wst.2007.572

    Article  Google Scholar 

  • Hernández Leal L, Soeter AM, Kools SAE, Kraak MHS, Parsons JR, Temmink H, Zeeman G, Buisman CJN (2012) Ecotoxicological assessment of grey water treatment systems with Daphnia magna and Chironomus riparius. Water Res 46(4):1038–1044. doi:10.1016/j.watres.2011.11.079

    Article  Google Scholar 

  • İrdemez Ş, Demircioğlu N, Yildiz YŞ (2006) The effects of pH on phosphate removal from wastewater by electrocoagulation with iron plate electrodes. J Hazard Mater 137(2):1231–1235. doi:10.1016/j.jhazmat.2006.04.019

    Article  Google Scholar 

  • Izquierdo CJ, Canizares P, Rodrigo MA, Leclerc JP, Valentin G, Lapicque F (2010) Effect of the nature of the supporting electrolyte on the treatment of soluble oils by electrocoagulation. Desalination 255(1–3):15–20. doi:10.1016/j.desal.2010.01.022

    Article  CAS  Google Scholar 

  • Jaafarzadeh N, Ghanbari F, Moradi M (2015) Photo-electro-oxidation assisted peroxymonosulfate for decolorization of acid brown 14 from aqueous solution. Korean J Chem Eng 32(3):458–464. doi:10.1007/s11814-014-0263-4

    Article  CAS  Google Scholar 

  • Jaafarzadeh N, Omidinasab M, Ghanbari F (2016) Combined electrocoagulation and UV-based sulfate radical oxidation processes for treatment of pulp and paper wastewater. Process Saf Environ Prot 102:462–472. doi:10.1016/j.psep.2016.04.019

    Article  CAS  Google Scholar 

  • Kobya M, Demirbas E, Gebologlu U, Oncel MS, Yildirim Y (2013) Optimization of arsenic removal from drinking water by electrocoagulation batch process using response surface methodology. Desalin Water Treat 51(34–36):6676–6687. doi:10.1080/19443994.2013.769700

    Article  CAS  Google Scholar 

  • Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal, B 87(3–4):105–145. doi:10.1016/j.apcatb.2008.09.017

    Article  Google Scholar 

  • Moradi M, Ghanbari F, Manshouri M, Angali KA (2015a) Photocatalytic degradation of azo dye using nano-ZrO2/UV/persulfate: response surface modeling and optimization. Korean J Chem Eng 33(2):539–546. doi:10.1007/s11814-015-0160-5

    Article  Google Scholar 

  • Moradi M, Ghanbari F, Minaee Tabrizi E (2015b) Removal of acid yellow 36 using Box–Behnken designed photoelectro-Fenton: a study on removal mechanisms. Toxicol Environ Chem 97(6):700–709. doi:10.1080/02772248.2015.1060975

    Article  CAS  Google Scholar 

  • Moradi M, Eslami A, Ghanbari F (2016) Direct blue 71 removal by electrocoagulation sludge recycling in photo-Fenton process: response surface modeling and optimization. Desalin Water Treat 57(10):4659–4670. doi:10.1080/19443994.2014.995714

    CAS  Google Scholar 

  • Muhamad MH, Sheikh Abdullah SR, Mohamad AB, Abdul Rahman R, Hasan Kadhum AA (2013) Application of response surface methodology (RSM) for optimisation of COD, NH3–N and 2,4-DCP removal from recycled paper wastewater in a pilot-scale granular activated carbon sequencing batch biofilm reactor (GAC-SBBR). J Environ Manag 121:179–190. doi:10.1016/j.jenvman.2013.02.016

    Article  CAS  Google Scholar 

  • Nair AT, Makwana AR, Ahammed MM (2014) The use of response surface methodology for modelling and analysis of water and wastewater treatment processes: a review. Water Sci Technol 69(3):464–478. doi:10.2166/wst.2013.733

    Article  CAS  Google Scholar 

  • Nasr M, Ateia M, Hassan K (2015) Artificial intelligence for greywater treatment using electrocoagulation process. Sep Sci Technol:1–10. doi:10.1080/01496395.2015.1062399

  • Oh S-Y, Kim H-W, Park J-M, Park H-S, Yoon C (2009) Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. J Hazard Mater 168(1):346–351. doi:10.1016/j.jhazmat.2009.02.065

    Article  CAS  Google Scholar 

  • Ölmez T (2009) The optimization of Cr(VI) reduction and removal by electrocoagulation using response surface methodology. J Hazard Mater 162(2–3):1371–1378. doi:10.1016/j.jhazmat.2008.06.017

    Article  Google Scholar 

  • Ozyonar F, Karagozoglu B (2012) Systematic assessment of electrocoagulation for the treatment of marble processing wastewater. Int J Environ Sci Technol 9(4):637–646. doi:10.1007/s13762-012-0093-z

    Article  CAS  Google Scholar 

  • Park S, Lee LS, Medina VF, Zull A, Waisner S (2016) Heat-activated persulfate oxidation of PFOA, 6:2 fluorotelomer sulfonate, and PFOS under conditions suitable for in-situ groundwater remediation. Chemosphere 145:376–383. doi:10.1016/j.chemosphere.2015.11.097

    Article  CAS  Google Scholar 

  • Pirkarami A, Olya ME, Tabibian S (2013) Treatment of colored and real industrial effluents through electrocoagulation using solar energy. J Environ Sci Health, Part A 48(10):1243–1252. doi:10.1080/10934529.2013.776890

    Article  CAS  Google Scholar 

  • Rijsberman FR (2006) Water scarcity: fact or fiction? Agric Water Manag 80(1–3):5–22. doi:10.1016/j.agwat.2005.07.001

    Article  Google Scholar 

  • Sanchez M, Rivero MJ, Ortiz I (2010) Photocatalytic oxidation of grey water over titanium dioxide suspensions. Desalination 262(1–3):141–146. doi:10.1016/j.desal.2010.05.060

    Article  CAS  Google Scholar 

  • Thirugnanasambandham K, Sivakumar V, Prakash Maran J (2015) Performance evaluation and optimization of electrocoagulation process to treat grey wastewater. Desalin Water Treat 55(7):1703–1711. doi:10.1080/19443994.2014.927793

    Article  CAS  Google Scholar 

  • Vogel AI (1989) Vogel’s textbook of quantitative chemical. Longman Scientic & Technical, London

    Google Scholar 

  • Wei X, Gao N, Li C, Deng Y, Zhou S, Li L (2016) Zero-valent iron (ZVI) activation of persulfate (PS) for oxidation of bentazon in water. Chem Eng J 285:660–670. doi:10.1016/j.cej.2015.08.120

    Article  CAS  Google Scholar 

  • Zhang B-T, Zhang Y, Teng Y, Fan M (2015) Sulfate radical and its application in decontamination technologies. Crit Rev Environ Sci Technol 45(16):1756–1800. doi:10.1080/10643389.2014.970681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Student Research Committee, Ahvaz Jundishapur University of Medical Sciences under grant no. 94s.159. The authors acknowledge Dr. Mahsa Moradi for invaluable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farshid Ghanbari.

Additional information

Responsible editor: Bingcai Pan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi, M., Ghanbari, F. Optimizing COD removal from greywater by photoelectro-persulfate process using Box-Behnken design: assessment of effluent quality and electrical energy consumption. Environ Sci Pollut Res 23, 19350–19361 (2016). https://doi.org/10.1007/s11356-016-7139-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7139-6

Keywords

Navigation