Skip to main content
Log in

Assessment of sulfide production risk in soil during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification process

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study aimed to determine the potential of sulfide generation during infiltration through soil of domestic wastewater treated by a sulfur-utilizing denitrification process. Three types of soil with different permeability rates (K s = 0.028, 0.0013, and 0.00015 cm/s) were investigated to evaluate the potential risk of sulfur generation during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system. These soils were thoroughly characterized and tested to assess their capacity to be used as drainages for wastewaters. Experiments were conducted under two operating modes (saturated and unsaturated). Sulfate, sulfide, and chemical oxygen demand (COD) levels were determined over a period of 100 days. Despite the high concentration of sulfates (200 mg/L) under anaerobic conditions (ORP = −297 mV), no significant amount of sulfide was generated in the aqueous (<0.2 mg/L) or gaseous (<0.15 ppm) phases. Furthermore, the soil permeability did not have a noticeable effect on the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification system due to low contents of organic matter (i.e., dissolved organic carbon, DOC). The autotrophic denitrification process used to treat the domestic wastewater allowed the reduction of the concentration of biochemical oxygen demand (BOD5) below 5 mg/L, of DOC below 7 mg/L, and of COD below 100 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BOD5 :

Biochemical oxygen demand after 5 days

COD:

Chemical oxygen demand

DOC:

Dissolved organic carbon

HRT:

Hydraulic retention time

Ks:

Permeability rate

ORP:

Oxidation–reduction potential

SRB:

Sulfate-reducing bacteria

SS:

Suspended solids

References

  • Abhilash, Pandey BD, Natarajan KA (2015) Microbiology for minerals, metals, materials and the environment. CRC Press, Boca Raton, p 608. ISBN 9781482257298

  • Alani AM, Faramarzi A, Mahmoodian M, Tee KF (2014) Prediction of sulphide build-up in filled sewer pipes. Environ Technol 35:1721–1728

    Article  CAS  Google Scholar 

  • Batchelor B, Lawrence AW (1978) A kinetic model for autotrophic denitrification using elemental sulfur. Water Res 12:1075–1084

  • Beauchamp RO, Bus JS, Popp JA, Boreiko CJ, Andjelkovich DA, Leber P (1984) A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 13:25–97

    Article  CAS  Google Scholar 

  • Bertolacini RJ, Barney JE (1957) Colorimetric determination of sulfate with barium chloranilate. Analytical Chemistry American Chemical Society 29:281–283.

  • Biswas T (2012) Effect of linoleic acid and COD/SO4 2− ratio on anaerobic sulphate reduction in semi-continuous reactors. Thesis report, University of Windsor, Windsor, ON, Canada, 119 pp

  • Brady NC, Weil RR (2008) The nature and properties of soils, 13th edn. Pearson Prentice Hall, Upper Saddle River, 960 pp. ISBN 0-13-016763-0

  • Brand TPH, Roest K, Chen GH, Brdjanovic D, Loosdrecht MCM (2015) Occurrence and activity of sulphate reducing bacteria in aerobic activated sludge systems. World J Microbiol Biotechnol 31:507–516

    Article  Google Scholar 

  • Buchanan JR (2014) Decentralized wastewater treatment. In: Ahuja S (ed) Comprehensive water quality and purification. Elsevier, Waltham, pp 244–267

    Chapter  Google Scholar 

  • Canadian Agricultural Services Coordinating and Groupe de travail sur la classification des sols (2002) Le systeme canadien de classification des sols. CNRC-NRC, Presses scientifiques du CNRC, Ottawa, ON, p 202

  • Canadian Water Network (2015) Assessment and management of environmental risks associated with decentralized rural wastewater management systems, Ontario, Canada, p 5

  • Cao JY, Zhang GJ, Mao ZS, Fang ZH, Yang C, Han BL (2009) Influence of Mg2+ on the growth and activity of sulfate reducing bacteria. Hydrometallurgy 95:127–134

    Article  CAS  Google Scholar 

  • Castro HF, Williams NH, Ogram A (2000) Phylogeny of sulfate-reducing bacterial. FEMS Microbiol Ecol 31:1–9

    CAS  Google Scholar 

  • Chou CHSJ (2003) Hydrogen sulfide. World Health Organization, Geneva, Switzerland, p 41

    Google Scholar 

  • Cline JD (1969) Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 13:454–458

  • Colleran E, Finnegan S, Lens P (1995) Anaerobic treatment of sulphate-containing waste streams. Antonie Van Leeuwenhoek 67:29–46

    Article  CAS  Google Scholar 

  • Dar SA, Kleerebezem R, Stams AJM, Kuenen JG, Muyzer G (2008) Competition and coexistence of sulfate-reducing bacteria, acetogens and methanogens in a lab-scale anaerobic bioreactor as affected by changing substrate to sulfate ratio. Appl Microbiol Biotechnol 78:1045–1055

    Article  CAS  Google Scholar 

  • Doujaiji B, Al-Tawfiq JA (2010) Hydrogen sulfide exposure in an adult male. Ann Saudi Med 30:76–80

    Google Scholar 

  • Friedrich CG, Rother D, Bardischewsky F, Quentmeier A, Fischer J (2001) Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism? Appl Environ Microbiol 67:2873–2882

    Article  CAS  Google Scholar 

  • Glass DC (1990) A review of the health effects of hydrogen sulphide exposure. Ann Occup Hyg 34:323–327

    Article  CAS  Google Scholar 

  • Gouvernement du Quebec (2015) Règlement sur l'évacuation et le traitement des eaux usées des résidences isolées, Québec, Canada, p 80

  • Gutierrez O, Park D, Sharma KR, Yuan Z (2009) Effects of long-term pH elevation on the sulfatereducing and methanogenic activities of anaerobic sewer biofilms. Water Res 43:2549–2557

  • Hao OJ, Chen JM, Huang L, Buglass RL (1996) Sulfate‐reducing bacteria. Crit Rev Environ Sci Technol 26:155–187

    Article  CAS  Google Scholar 

  • Hargett DL, Tyler EJ, Siegrist RL (1981) Soil infiltration capacity as affected by septic tank effluent application strategies. In: Small Scale Waste Management Project, University of Wisconsin–Extension, Wisconsin, 13 pp

  • Jiang G, Gutierrez O, Sharma KR, Yuan Z (2010) Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems. Water Res 44:4241–4251

    Article  CAS  Google Scholar 

  • Lens PNL, Hulshoff Pol L (2004) Environmental technologies to treat sulfur pollution : principles and engineering. IWA Publishing, London, 547 pp. ISBN 1900222094 01/2000

  • Lens PNL, Visser A, Janssen AJH, Pol LWH, Lettinga G (1998) Biotechnological treatment of sulfate-rich wastewaters. Crit Rev Environ Sci Technol 28:41–88

    Article  CAS  Google Scholar 

  • Lewandowski A (2013) Organic matter management. Soil Quality Institute, Natural Resources Conservation Service, USA

    Google Scholar 

  • Liu ZH, Maszenan AM, Liu Y, Ng WJ (2014) A brief review on possible approaches towards controlling sulfate-reducing bacteria (SRB) in wastewater treatment systems. Desalin Water Treat 53:2799–2807

    Article  Google Scholar 

  • Massoud MA, Tarhini A, Nasr JA (2009) Decentralized approaches to wastewater treatment and management: applicability in developing countries. J Environ Manage 90:652–659

    Article  Google Scholar 

  • McKinley JW, Siegrist RL (2011) Soil clogging genesis in soil treatment units used for onsite wastewater reclamation: a review. Crit Rev Environ Sci Technol 41:2186–2209

    Article  CAS  Google Scholar 

  • MDDEFP (2013) Étude d'impact économique du projet de règlement modifiant le règlement sur l'évacuation et le traitement des eaux usées des résidences isolées. Ministère du développement durable, de l'environnement, de la faune et des parcs, Canada, p 15

    Google Scholar 

  • Mockaitis G, Friedl GF, Rodrigues JAD, Ratusznei SM, Zaiat M, Foresti E (2010) Influence of feed time and sulfate load on the organic and sulfate removal in an ASBR. Bioresour Technol 101:6642–6650

    Article  CAS  Google Scholar 

  • Neculita CM, Zagury GJ (2008) Biological treatment of highly contaminated acid mine drainage in batch reactors: long-term treatment and reactive mixture characterization. J Hazard Mater 157:358–366

  • Nguyen HH, Nguyen XH, Tran Y, Nguyen NT (2013) Factors effect to the sulfide generation rate in the To Lich River, Vietnam. ARPN J Eng Appl Sci 8:190–199

  • Nielsen PH, Hvitved-Jacobsen T (1988) Effect of sulfate and organic matter on the hydrogen sulfide formation in biofilms of filled sanitary sewers. J Water Pollut Control Fed 60:627–634

    CAS  Google Scholar 

  • Nielsen PHR, Raukjaer K, Hvitved-Jacobsen T (1998) Sulfide production and wastewater quality in pressure mains. Water Sci Technol 37:97–104

    Article  CAS  Google Scholar 

  • Park K, Lee H, Phelan S, Liyanaarachchi S, Marleni N, Navaratna D, Jegatheesan V, Shu L (2014) Mitigation strategies of hydrogen sulphide emission in sewer networks—a review. Int Biodeter Biodegr 95(Part A):251–261

    Article  CAS  Google Scholar 

  • Partlo LA, Sainsbury RS, Roth SH (2001) Effects of repeated hydrogen sulphide (H2S) exposure on learning and memory in the adult rat. NeuroToxicology 22:177–189

    Article  CAS  Google Scholar 

  • Pomeroy R, Bowlus FD (1946) Progress report on sulfide control research. Sew Work J 18:597–640

  • Québec, Service des eaux (2007) Traitement des eaux usées des résidences isolées guide technique. Service des eaux municipales, Direction des politiques de l'eau, Ministère du développement durable, de l'environnement et des parcs, Québec, p 22

    Google Scholar 

  • Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol Toxicol 32:109–134

    Article  CAS  Google Scholar 

  • Siegrist RL, McCray JE, Lowe KS (2004) Wastewater infiltration into soil and the effects of infiltrative surface architecture. J Small Flows 5:29–39

    Google Scholar 

  • Suriyachan C, Nitivattananon V, Amin ATMN (2012) Potential of decentralized wastewater management for urban development: case of Bangkok. Habitat Int 36:85–92

    Article  Google Scholar 

  • Velasco A, Ramírez M, Volke-Sepúlveda T, González-Sánchez A, Revah S (2008) Evaluation of feed COD/sulfate ratio as a control criterion for the biological hydrogen sulfide production and lead precipitation. J Hazard Mater 151:407–413

    Article  CAS  Google Scholar 

  • Zhou W, Sun Y, Wu B, Zhang Y, Huang M, Miyanaga T, Zhang Z (2011) Autotrophic denitrification for nitrate and nitrite removal using sulfur–limestone. J Environ Sci 23:1761–1769

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial and technical support of Premier Tech Aqua and the support from the Research funds of Quebec Nature and Technology. The Natural Sciences and Engineering Research Council of Canada also contributed to this research. Sincere thanks are also extended to Robert Thomas and Ginette Bélanger for their contributions to this study. Sincere thanks are due to Myriam Chartier (M.Sc. and research agent) who helped a lot with the conception of the system and the day-to-day supervision during the experiment and analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Blais.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghorbel, L., Coudert, L., Gilbert, Y. et al. Assessment of sulfide production risk in soil during the infiltration of domestic wastewater treated by a sulfur-utilizing denitrification process. Environ Sci Pollut Res 23, 19071–19083 (2016). https://doi.org/10.1007/s11356-016-6979-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6979-4

Keywords

Navigation