Skip to main content

Advertisement

Log in

Carbon dioxide mineralization process design and evaluation: concepts, case studies, and considerations

  • Technoeconomic Perspectives on Sustainable CO2 Capture and Utilization
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Numerous carbon dioxide mineralization (CM) processes have been proposed to overcome the slow rate of natural weathering of silicate minerals. Ten of these proposals are mentioned in this article. The proposals are described in terms of the four major areas relating to CM process design: pre-treatment, purification, carbonation, and reagent recycling operations. Any known specifics based on probable or representative operating and reaction conditions are listed, and basic analysis of the strengths and shortcomings associated with the individual process designs are given in this article. The processes typically employ physical or chemical pseudo-catalytic methods to enhance the rate of carbon dioxide mineralization; however, both methods have its own associated advantages and problems. To examine the feasibility of a CM process, three key aspects should be included in the evaluation criteria: energy use, operational considerations as well as product value and economics. Recommendations regarding the optimal level of emphasis and implementation of measures to control these aspects are given, and these will depend very much on the desired process objectives. Ultimately, a mix-and-match approach to process design might be required to provide viable and economic proposals for CM processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Scheme 1
Scheme 2
Fig. 3
Scheme 3
Fig. 4
Fig. 5
Fig. 6
Scheme 4
Scheme 5
Scheme 6
Scheme 7
Scheme 8
Scheme 9
Scheme 10

Similar content being viewed by others

Abbreviations

CM:

Carbon dioxide mineralization

EDTA:

Ethylenediaminetetraacetic acid

BMED:

Bipolar membrane electrodialysis

MEA:

Monoethanolamine

References

  • Adánez J, de Diego LF, García-Labiano F, Gayán P, Abad A, Palacios JM (2004) Selection of oxygen carriers for chemical-looping combustion. Energy Fuel 18:371–377. doi:10.1021/ef0301452

    Article  CAS  Google Scholar 

  • Alexander G, Maroto-Valer MM, Gafarova-Aksoy P (2007) Evaluation of reaction variables in the dissolution of serpentine for mineral carbonation. Fuel 86:273–281

    Article  CAS  Google Scholar 

  • Alie C, Backham L, Croiset E, Douglas PL (2005) Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method. Energ Convers Manag 46:475–487. doi:10.1016/j.enconman.2004.03.003

    Article  CAS  Google Scholar 

  • Allen DJ, Brent GF (2010) Sequestering CO2 by mineral carbonation: stability against acid rain exposure. Environ Sci Technol 44:2735–2739

    Article  CAS  Google Scholar 

  • Assima GP, Larachi F, Molson J, Beaudoin G (2013) Accurate and direct quantification of native brucite in serpentine ores—new methodology and implications for CO2 sequestration by mining residues. Thermochim Acta 566:281–291. doi:10.1016/j.tca.2013.06.006

    Article  CAS  Google Scholar 

  • Assima GP, Larachi F, Molson J, Beaudoin G (2014). Emulation of ambient carbon dioxide diffusion and carbonation within nickel mining residues. Mineral Eng. doi:10.1016/j.mineng.2013.09.002

  • Bai P, Sharratt P, Yeo TY, Bu J (2011) Production of nanostructured magnesium carbonates from serpentine: implication for flame retardant application. J Nanoengineer Nanomanufact 1:272–279

    Article  CAS  Google Scholar 

  • Bai P, Sharratt P, Yeo TY, Bu J (2014) A facile route to preparation of high purity nanoporous silica from acid-leached residue of serpentine. J Nanosci Nanotechnol 14:Article in Press

  • Baldyga J, Henczka M, Sokolnicka K (2011) Mineral carbonation accelerated by dicarboxylic acids as a disposal process of carbon dioxide. Chem Eng Res Des 89:1841–1854

    Article  CAS  Google Scholar 

  • Balucan RD, Dlugogorski BZ (2013) Thermal activation of antigorite for mineralization of CO2. Environ Sci Technol 47:182–190

    Article  CAS  Google Scholar 

  • Balucan RD, Dlugogorski BZ, Kennedy EM, Belova IV, Murch GE (2013) Energy cost of heat activating serpentinites for CO2 storage by mineralization. Int J Greenhouse Gas Contr 17:225–239

    Article  CAS  Google Scholar 

  • Banwart SA, Berg A, Beerling DJ (2009) Process-based modeling of silicate mineral weathering responses to increasing atmospheric CO2 and climate change. Global Biogeochem Cycles 23:1–13. doi:10.1029/2008GB003243

    Article  CAS  Google Scholar 

  • Barbero R et al (2013) Engineered yeast for enhanced CO2. Mineraliz Energ Environ Sci 6:660–674

    Article  CAS  Google Scholar 

  • Barzagli F, Mani F, Peruzzini M (2011) From greenhouse gas to feedstock: formation of ammonium carbamate from CO2 and NH3 in organic solvents and its catalytic conversion into urea under mild conditions. Green Chem 13:1267–1274

    Article  CAS  Google Scholar 

  • Basile A, Hughes J, McFarlane AJ, Bhargava SK (2010) Development of a model for serpentine quantification in nickel laterite minerals by infrared spectroscopy. Mineral Eng 23:407–412. doi:10.1016/j.mineng.2009.11.018

    Article  CAS  Google Scholar 

  • Béarat H et al (2006) Carbon sequestration via aqueous olivine mineral carbonation: role of passivating layer formation. Environ Sci Technol 40:4802–4808. doi:10.1021/es0523340

    Article  CAS  Google Scholar 

  • Bhown AS, Freeman BC (2011) Analysis and status of post-combustion carbon dioxide capture technologies. Environ Sci Technol 45:8624–8632. doi:10.1021/es104291d

    Article  CAS  Google Scholar 

  • Bobicki ER, Liu Q, Xu Z, Zeng H (2012) Carbon capture and storage using alkaline industrial wastes. Progre Energ Combust Sci 38:302–320

    Article  CAS  Google Scholar 

  • Boot-Handford ME et al. (2013) Carbon capture and storage update. Energ Environ Sci doi:10.1039/c1033ee42350f. doi:10.1039/c3ee42350f

  • Brady PV (1991) The effect of silicate weathering on global temperature and atmospheric CO2. J Geophys Res 96:18101–18106

    Article  CAS  Google Scholar 

  • Brent GF (2009) Integrated chemical process. US20090305378 A1

  • Brent GF, Allen DJ, Eichler BR, Petrie JG, Mann JP, Haynes BS (2011) Mineral carbonation as the core of an industrial symbiosis for energy intensive minerals conversion. J Indust Ecol 16:94–104

    Article  CAS  Google Scholar 

  • Bu J, Bai P, Yeo TY, Sharratt P, Borgna A, Khoo HH (2011) Two birds with one stone: why CO2 mineralization is attracting interest in Singapore. In: 11th International Conference on Carbon Dioxide Utilization (ICCDU XI), Dijon, France, 2011

  • Carey JW, Lichtner PC, Rosen EP, Ziock HJ, Guthrie GD (2003) Geochemical mechanisms of serpentine and olivine carbonation. In: Second Annual Conference on Carbon Sequestration, NETL, 2003

  • Chapter 6: The kinetics of mineral carbonation (2006). In: Luigi M (ed) Developments in geochemistry, vol Volume 11. Elsevier, pp 169–317. doi:10.1016/S0921-3198(06)80026-8

  • Chen Z-Y, O’Connor WK, Gerdemann SJ (2006) Chemistry of aqueous mineral carbonation for carbon sequestration and explanation of experimental results. Environ Progr 25:161–166. doi:10.1002/ep.10127

    Article  CAS  Google Scholar 

  • Cizer Ö, Van Balen K, Elsen J, Van Gemert D (2012) Real-time investigation of reaction rate and mineral phase modifications of lime carbonation. Construct Build Mater 35:741–751. doi:10.1016/j.conbuildmat.2012.04.036

    Article  Google Scholar 

  • Clarke F, Steiger G (1902) The action of ammonium chloride upon silicates. Govt Print Off

  • Cohen SM, Rochelle GT, Webber ME (2010) Turning CO2 capture on and off in response to electric grid demand: a baseline analysis of emissions and economics. J Energ Resour Technol 132:1–8, 021003

    Article  CAS  Google Scholar 

  • Constantz BR, Farsad K, Camire C et al (2012) Methods and compositions using calcium carbonate: U.S. Patent 8,177,909. 2012-5-15

  • D’Alessandro DM, Smit B, Long JR (2010) Carbon dioxide capture: prospects for new materials. Angew Chem Int Ed 49:6058–6082. doi:10.1002/anie.201000431

    Article  CAS  Google Scholar 

  • Damiani D, Litynski JT, McIlvried HG, Vikara DM, Srivastava RD (2012) The U.S. Department of Energy’s R&D program to reduce greenhouse gas emissions through beneficial uses of carbon dioxide. Greenhouse Gas Sci Technol 2:9–19

    Article  CAS  Google Scholar 

  • Darde V, Thomsen K, van Well WJM, Stenby EH (2010) Chilled ammonia process for CO2 capture. Int J Greenhouse Gas Contr 4:131–136. doi:10.1016/j.ijggc.2009.10.005

    Article  CAS  Google Scholar 

  • Daval D, Martinez I, Corvisier J, Findling N, Goffé B, Guyot F (2009) Carbonation of Ca-bearing silicates, the case of wollastonite: experimental investigations and kinetic modeling. Chem Geol 265:63–78. doi:10.1016/j.chemgeo.2009.01.022

    Article  CAS  Google Scholar 

  • Doucet FJ (2001) Scoping Study on CO2 Mineralization Technologies. CGS, Pretoria, South Africa, 2011

  • Drever JI (1994) The effect of land plants on weathering rates of silicate minerals. Geochim Cosmochim Acta 58:2325–2332. doi:10.1016/0016-7037(94)90013-2

    Article  CAS  Google Scholar 

  • Dri M, Sanna A, Maroto-Valer MM (2013) Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation. Fuel Proc Technol 113:114–122

    Article  CAS  Google Scholar 

  • Einstein A, Szilard L (1930) Refrigeration. US1,781,541

  • Eloneva S, Said A, Fogelholm C-J, Zevenhoven R (2012) Preliminary assessment of a method utilizing carbon dioxide and steelmaking slag to produce precipitated calcium carbonate. Appl Energ 90:329–334

    Article  CAS  Google Scholar 

  • Enick RM, Beckman EJ, Shi C, Xu J, Chordia L (2001) Remediation of metal-bearing aqueous waste streams via direct carbonation. Energy Fuel 15:256–262. doi:10.1021/ef000245x

    Article  CAS  Google Scholar 

  • Fagerlund J (2012) Carbonation of Mg (OH)2 in a pressurised fluidised bed for CO2 sequestration. 2012

  • Fagerlund J, Nduagu E, Romão I, Zevenhoven R (2012) CO2 fixation using magnesium silicate minerals. Part 1: process description and performance. Energy 41:184–191

    Article  CAS  Google Scholar 

  • Fricker KJ, Park A-HA (2013) Effect of H2O on Mg(OH)2 carbonation pathways for combined CO2 capture and storage. Chem Eng Sci 100:332–341. doi:10.1016/j.ces.2012.12.027

    Article  CAS  Google Scholar 

  • Galwey AK, Laverty GM (1989) The thermal decomposition of magnesium chloride dihydrate. Thermochim Acta 138:115–127

    Article  CAS  Google Scholar 

  • Geerlings H, Zevenhoven R (2013) CO2 mineralization—bridge between storage and utilization of CO2. Ann Rev Chem Biomolecul Eng 4:103–117

    Article  CAS  Google Scholar 

  • Gerdemann SJ, Dahlin DC, O’Connor WK (2003) Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals. In: Gale J, Kaya Y (eds) Greenhouse gas control technologies—6th International Conference. Pergamon, Oxford, pp 677–682. doi:10.1016/B978-008044276-1/50108-2

  • Gerdemann SJ, O’Connor WK, Dahlin DC, Penner LR, Rush H (2007) Ex situ aqueous mineral carbonation. Environ Sci Technol 41:2587–2593

    Article  CAS  Google Scholar 

  • Gislason SR, Oelkers EH (2011) Silicate rock weathering and the global carbon cycle. Front Geochemi Contribut Geochem Stud Earth. Wiley-Blackwell, Chichester, United Kingdom, 2011: 84–103. doi:10.1007/s11356-016-6512-9

  • Goldberg P, Walters R (2003) A program to develop CO2 sequestration via mineral carbonation. In: Gale J, Kaya Y (eds) Greenhouse gas control technologies—6th International Conference. Pergamon, Oxford, pp 665–669. doi:10.1016/B978-008044276-1/50106-9

  • Gómez et al (2006) Website: https://www.ipccnggip.iges.or.jp/public/2006gl/pdf/2_Volume2/V2_2_Ch2_Stationary_Combustion.pdf

  • Grover SPP, Baldock JA (2012) Carbon chemistry and mineralization of peat soils from the Australian Alps. Eur J Soil Sci 63:129–140. doi:10.1111/j.1365-2389.2011.01424.x

    Article  CAS  Google Scholar 

  • Gwiazda RH, Broecker WS (1994) The separate and combined effects of temperature, soil pCO2, and organic acidity on silicate weathering in the soil environment: formulation of a model and results. Global Biogeochem Cycles 8:141–155

    Article  CAS  Google Scholar 

  • Halstead WD (1970) Thermal decomposition of ammonium sulphate. J Appl Chem 20:129–132

    Article  CAS  Google Scholar 

  • Hangx SJT, Spiers CJ (2009) Coastal spreading of olivine to control atmospheric CO2 concentrations: a critical analysis of viability. Int J Greenhouse Gas Contr 3:757–767

    Article  CAS  Google Scholar 

  • Hartmann J et al (2013) Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon dioxide, supply nutrients and mitigate ocean acidification. Rev Geophys 51:113–149

    Article  Google Scholar 

  • He L, Yu D, Lv W, Wu J, Xu M (2013) A novel method for CO2 sequestration via indirect carbonation of coal fly ash. Indust Eng Chem Res 52:15138–15145. doi:10.1021/ie4023644

    Article  CAS  Google Scholar 

  • Highfield J, Lim H, Fagerlund J, Zevenhoven R (2012) Activation of serpentine for CO2 mineralization by flux extraction of soluble magnesium salts using ammonium sulfate. RSC Advan 2:6535–6541. doi:10.1039/c2ra01347a

    Article  CAS  Google Scholar 

  • Hitch M, Dipple GM (2012) Economic feasibility and sensitivity analysis of integrating industrial-scale mineral carbonation into mining operations. Mineral Eng 39:268–275. doi:10.1016/j.mineng.2012.07.007

    Article  CAS  Google Scholar 

  • Huang HP, Shi Y, Li W, Chang SG (2001) Dual alkali approaches for the capture and separation of CO2. Energy Fuel 15:263–268. doi:10.1021/ef0002400

    Article  CAS  Google Scholar 

  • Huang Q, Lu G, Wang J, Yu J (2011) Thermal decomposition mechanisms of MgCl2.6H2O and MgCl2.H2O. J Anal Appl Pyrolysis 91:159–164

    Article  CAS  Google Scholar 

  • Huijgen WJJ, Ruijg GJ, Comans RNJ, Witkamp G-J (2006) Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Indust Eng Chem Res 45:9184–9194. doi:10.1021/ie060636k

    Article  CAS  Google Scholar 

  • Iizuka A, Fujii M, Yamasaki A, Yanagisawa Y (2004) Development of a new CO2 sequestration process utilizing the carbonation of waste cement. Indust Eng Chem Res 43:7880–7887. doi:10.1021/ie0496176

    Article  CAS  Google Scholar 

  • Innovation Concepts BV. http://www.innovationconcepts.eu/Welcome.htm

  • EIA U (2010) Instructions for Form EIA-1605: Voluntary Reporting of Greenhouse Gases. 2007

  • Jarvis K, Carpenter RW, Windman T, Kim Y, Nunez R, Alawneh F (2009) Reaction mechanisms for enhancing mineral sequestration of CO2. Environ Sci Technol 43:6314–6319. doi:10.1021/es8033507

    Article  CAS  Google Scholar 

  • Jones JD, Yablonsky A (2013) Carbon dioxide sequestration involving two-salt-based thermolytic processes: U.S. Patent Application 13/739,456. 2013-1-11

  • Kakizawa M, Yamasaki A, Yanagisawa Y (2001) A new CO2 disposal process via artificial weathering of calcium silicate accelerated by acetic acid. Energy 26:341–354

    Article  CAS  Google Scholar 

  • Kenarsari SD et al (2013) Review of recent advances in carbon dioxide separation and capture. RSC Advan 3:22739–22773. doi:10.1039/c3ra43965h

    Article  CAS  Google Scholar 

  • Khoo HH et al (2011) Carbon capture and mineralization in Singapore: preliminary environmental impacts and costs via LCA. Indust Eng Chem Res 50:11350–11357. doi:10.1021/ie200592h

    Article  CAS  Google Scholar 

  • King HE, Plümper O, Putnis A (2010) Effect of secondary phase formation on the carbonation of olivine. Environ Sci Technol 44:6503–6509. doi:10.1021/es9038193

    Article  CAS  Google Scholar 

  • Kirchofer A, Becker A, Brandt A, Wilcox J (2013) CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States. Environ Sci Technol 47:7548–7554

    CAS  Google Scholar 

  • Kiyoura R, Urano K (1970) Mechanism, kinetics and equilibrium of thermal decomposition of ammonium sulfate. Ind Eng Chem Proc Des Develop 9:489–494

    Article  CAS  Google Scholar 

  • Klein F, Garrido CJ (2011) Thermodynamic constraints on mineral carbonation of serpentinized peridotite. Lithos 126:147–160. doi:10.1016/j.lithos.2011.07.020

    Article  CAS  Google Scholar 

  • Kodama S, Nishimoto T, Yamamoto N, Yogo K, Yamada K (2008) Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy 33:776–784

    Article  Google Scholar 

  • Krevor SCM, Lackner KS (2011) Enhancing serpentine dissolution kinetics for mineral carbon dioxide sequestration. Int J Greenhouse Gas Contr 5:1073–1080

    Article  CAS  Google Scholar 

  • Kwon S, Fan M, Dacosta HFM, Russell AG, Tsouris C (2011) Reaction kinetics of CO2 carbonation with Mg-rich minerals. J Phys Chem A 115:7638–7644. doi:10.1021/jp2040899

    Article  CAS  Google Scholar 

  • Lackner KS (2003) A guide to CO2 sequestration. Science 300:1677–1678. doi:10.1126/science.1079033

    Article  CAS  Google Scholar 

  • Lackner KS, Butt DP, Wendt CH (1997) Magnesite disposal of carbon dioxide. In: 22nd International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, Florida, March 16–19, 1997 1997

  • Last and Schmick (2011) Identification and selection of major carbon dioxide stream compositions. Pacific Northwest National Laboratory, 2011

  • Lee MG, Ryu KW, Jang YN, Kim W, Bang J-H (2011) Effect of oxalic acid on heat pretreatment for serpentine carbonation. Mater Trans 52:235–238

    Article  CAS  Google Scholar 

  • Li G, Xu X (1993) Experimental investigation of the energy-size reduction relationship in comminution using fractal theory. Mineral Eng 6:163–172. doi:10.1016/0892-6875(93)90130-F

    Article  Google Scholar 

  • MacDowell N et al (2010) An overview of CO2 capture technologies. Energ Environ Sci 3:1645–1669

    Article  CAS  Google Scholar 

  • Mahlknecht J, Steinich B, Navarro de León I (2004) Groundwater chemistry and mass transfers in the Independence aquifer, central Mexico, by using multivariate statistics and mass-balance models. Env Geol 45:781–795. doi:10.1007/s00254-003-0938-3

    Article  CAS  Google Scholar 

  • Maroto-Valer MM, Fauth DJ, Kuchta ME, Zhang Y, Andrésen JM (2005) Activation of magnesium rich minerals as carbonation feedstock materials for CO2 sequestration. Fuel Proc Technol 86:1627–1645. doi:10.1016/j.fuproc.2005.01.017

    Article  CAS  Google Scholar 

  • Matter JM, Kelemen PB (2009) Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat Geosci 2:837–841

    Article  CAS  Google Scholar 

  • McKelvy MJ, Chizmeshya AVG, Diefenbacher J, Béarat H, Wolf G (2004) Exploration of the role of heat activation in enhancing serpentine carbon sequestration reactions. Environ Sci Technol 38:6897–6903. doi:10.1021/es049473m

    Article  CAS  Google Scholar 

  • Metz (2005) Carbon dioxide capture and storage. 2005

  • Mikkelsen M, Jorgensen M, Krebs FC (2010) The teraton challenge. A review of fixation and transformation of carbon dioxide. Energ Environ Sci 3:43–81. doi:10.1039/b912904a

    Article  CAS  Google Scholar 

  • Miller QRS et al (2013) Insights into silicate carbonation processes in water-bearing supercritical CO2 fluids. Int J Greenhouse Gas Contr 15:104–118. doi:10.1016/j.ijggc.2013.02.005

    Article  CAS  Google Scholar 

  • Moazzem S, Rasul MG, Khan MMK (2013) Energy recovery opportunities from mineral carbonation process in coal fired power plant. Appl Thermal Eng 51:281–291. doi:10.1016/j.applthermaleng.2012.09.021

    Article  CAS  Google Scholar 

  • Montes-Hernandez G, Renard F, Chiriac R, Findling N, Toche F (2012) Rapid precipitation of magnesite microcrystals from Mg(OH)2-H2O-CO2 slurry enhanced by NaOH and a heat-aging step (from ∼20 to 90 °C). Crystal Growth Des 12:5233–5240. doi:10.1021/cg300652s

    Article  CAS  Google Scholar 

  • Moomaw et al (2011) IPCC special report on renewable energy sources and climate change mitigation. 2011

  • Nduagu E (2012) Production of Mg(OH)2 from Mg-silicate rock for CO2 mineral sequestration. Åbo Akademi University

  • O'Connor et al (2001) Carbon dioxide sequestration: aqueous mineral carbonation studies using olivine and serpentine. Albany Research Center (ARC), Albany, OR, 2001

  • O’Connor WK, Dahlin DC, Rush GE, Gerdemann SJ, Penner LR (2005a) Energy and economic evaluation of ex situ aqueous mineral carbonation. In: Rubin ES, Keith DW, Gilboy CF, Wilson M, Morris T, Gale J, Thambimuthu K (eds) Greenhouse gas control technologies 7. Elsevier Science Ltd, Oxford, pp 2011–2015. doi:10.1016/B978-008044704-9/50261-5

    Chapter  Google Scholar 

  • O’Connor et al (2005b) Aqueous mineral carbonation, mineral availability, pretreatment, reaction parametrics, and process studies Final report. Off Proc Develop, Albany Research Center, Office of Fossil Energy, US DOE, 2004

  • Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Petroleum Sci Eng 109:364–392. doi:10.1016/j.petrol.2013.03.013

    Article  CAS  Google Scholar 

  • Oskierski HC, Dlugogorski BZ, Jacobsen G (2013) Sequestration of atmospheric CO2 in chrysotile mine tailings of the Woodsreef Asbestos Mine, Australia: quantitative mineralogy, isotopic fingerprinting and carbonation rates. Chem Geol 358:156–169. doi:10.1016/j.chemgeo.2013.09.001

    Article  CAS  Google Scholar 

  • Pan S-Y, Chang EE, Chiang P-C (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12:770–791

    CAS  Google Scholar 

  • Park AHA (2005) Carbon dioxide sequestration: chemical and physical activation of aqueous carbonation of Mgbearing minerals and pH swing process. The Ohio State University, 2005

  • Penner LR, O'Connor WK, Dahlin DC et al (2004) Mineral carbonation: energy costs of pretreatment options and insights gained from flow loop reaction studies. Albany Research Center (ARC), Albany, OR, 2004

  • Prevention I P (2001) Control Integrated Pollution Prevention and Control, Reference Document on Best Available Techniques in the Chlor-Alkali Manufacturing Industry. European Commission Institute for Prospective Technological Studies, 2001

  • Prigiobbe V, Polettini A, Baciocchi R (2009) Gas–solid carbonation kinetics of air pollution control residues for CO2 storage. Chem Eng J 148:270–278. doi:10.1016/j.cej.2008.08.031

    Article  CAS  Google Scholar 

  • Pronost J, Beaudoin G, Tremblay J, Larachi F, Duchesne J, Hébert R, Constantin M (2011) Carbon sequestration kinetic and storage capacity of ultramafic mining waste. Environ Sci Technol 45:9413–9420. doi:10.1021/es203063a

    Article  CAS  Google Scholar 

  • Quadrelli EA, Centi G, Duplan J-L, Perathoner S (2011) Carbon dioxide recycling: emerging large-scale technologies with industrial potential. Chem Sus Chem 4:1194–1215

    Article  CAS  Google Scholar 

  • Rajapaksha AU, Vithanage M, Oze C, Bandara WMAT, Weerasooriya R (2012) Nickel and manganese release in serpentine soil from the Ussangoda Ultramafic Complex, Sri Lanka. Geoderma 189–190:1–9. doi:10.1016/j.geoderma.2012.04.019

    Article  CAS  Google Scholar 

  • Reardon EJ, Dewaele P (1990) Chemical model for the carbonation of a grout/water slurry. J Am Ceram Soc 73:1681–1690. doi:10.1111/j.1151-2916.1990.tb09813.x

    Article  CAS  Google Scholar 

  • Renforth P, Washbourne CL, Taylder J, Manning DAC (2011) Silicate production and availability for mineral carbonation. Environ Sci Technol 45:2035–2041. doi:10.1021/es103241w

    Article  CAS  Google Scholar 

  • Romão I, Nduagu E, Fagerlund J, Gando-Ferreira LM, Zevehoven R (2012) CO2 fixation using magnesium silicate minerals. Part 2: energy efficiency and integration with iron and steelmaking. Energy 41:203–211

    Article  CAS  Google Scholar 

  • Sanna A, Dri M, Maroto-Valer M (2012a) Carbon dioxide capture and storage by pH swing aqueous mineralization using a mixture of ammonium salts and antigorite source. Fuel 114:153–161

    Article  CAS  Google Scholar 

  • Sanna A, Hall MR, Maroto-Valer M (2012b) Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral. Mater Energ Environ Sci 5:7781–7796

    Article  CAS  Google Scholar 

  • Sanna A, Wang X, Lacinska A, Styles M, Paulson T, Maroto-Valer MM (2013) Enhancing Mg extraction from lizardite-rich serpentine for CO2 mineral sequestration. Mineral Eng 49:135–144

    Article  CAS  Google Scholar 

  • Santos RM, Bouwel JV, Vandevelde E, Mertens G, Elsen J, Gerven TV (2013a) Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties. Int J Greenhouse Gas Contr 17:32–45

    Article  CAS  Google Scholar 

  • Santos RM, François D, Mertens G, Elsen J, Van Gerven T (2013b) Ultrasound-intensified mineral carbonation. Appl Thermal Eng 57:154–163. doi:10.1016/j.applthermaleng.2012.03.035

    Article  CAS  Google Scholar 

  • Santos RM, Chiang YW, Elsen J, Van Gerven T (2014) Distinguishing between carbonate and non-carbonate precipitates from the carbonation of calcium-containing organic acid leachates. Hydrometallurg 147:90–94

    Article  CAS  Google Scholar 

  • Schott J, Berner RA, Sjöberg EL (1981) Mechanism of pyroxene and amphibole weathering—I. Experimental studies of iron-free minerals. Geochim Cosmochim Acta 45:2123–2135

    Article  CAS  Google Scholar 

  • Schuiling RD, Krijgsman P (2006) Enhanced weathering: an effective and cheap tool to sequester CO2. Clim Change 74:349–354

    Article  CAS  Google Scholar 

  • Slotte M, Romão I, Zevenhoven R (2013) Integration of a pilot-scale serpentinite carbonation process with an industrial lime kiln. Energy 62:142–149. doi:10.1016/j.energy.2013.07.009

    Article  CAS  Google Scholar 

  • Statistics I E A (2012) CO2 Emissions from Fuel Combustion, Highlights. IEA, Paris http://www.iea.org/co2highlights/co2highlights.pdf. Cited July, 2011

  • Stewart C, Hessami M-A (2005) A study of methods of carbon dioxide capture and sequestration––the sustainability of a photosynthetic bioreactor approach. Energ Convers Manag 46:403–420. doi:10.1016/j.enconman.2004.03.009

    Article  CAS  Google Scholar 

  • Stolaroff JK, Keith DW, Lowry GV (2008) Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ Sci Technol 42:2728–2735

    Article  CAS  Google Scholar 

  • Taulis M GWCarb v1.0: carbonate speciation tool. http://eprints.qut.edu.au/55168/. Accessed 27 June 2014

  • Teir S, Revitzer H, Eloneva S, Fogelholm C-J, Zevenhoven R (2007) Dissolution of natural serpentinite in mineral and organic acids. Int J Miner Process 83:36–46. doi:10.1016/j.minpro.2007.04.001

    Article  CAS  Google Scholar 

  • Teir S, Eloneva S, Fogelholm C-J, Zevenhoven R (2009) Fixation of carbon dioxide by producing hydromagnesite from serpentinite. Appl Energ 86:214–218

    Article  CAS  Google Scholar 

  • Tozer RM, James RW (1997) Fundamental thermodynamics of ideal absorption cycles. Int J Refrig 20:120–135. doi:10.1016/S0140-7007(96)00061-8

    Article  CAS  Google Scholar 

  • Valenti G, Bonalumi D, Macchi E (2012) A parametric investigation of the chilled ammonia process from energy and economic perspectives. Fuel 101:74–83. doi:10.1016/j.fuel.2011.06.035

    Article  CAS  Google Scholar 

  • Van Pham TH, Aagaard P, Hellevang H (2012) On the potential for CO2 mineral storage in continental flood basalts—PHREEQC batch- and 1D diffusion–reaction simulations. Geochem Trans 13:5

    Article  CAS  Google Scholar 

  • von der Assen N, Jung J, Bardow A (2013) Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energ Environ Sci 6:2721–2734. doi:10.1039/c3ee41151f

    Article  CAS  Google Scholar 

  • Wang X, Maroto-Valer MM (2011) Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts. Chem Sus Chem 4:1291–1300

    Article  CAS  Google Scholar 

  • Wang T, Lackner KS, Wright AB (2013a) Moisture-swing sorption for carbon dioxide capture from ambient air: a thermodynamic analysis. Phys Chem Chem Phys 15:504–514. doi:10.1039/c2cp43124f

    Article  CAS  Google Scholar 

  • Wang W, Liu X, Wang P, Zheng Y, Wang M (2013b) Enhancement of CO2 mineralization in Ca2+−/Mg2+-rich aqueous solutions using insoluble amine. Indust Eng Chem Res 52:8028–8033. doi:10.1021/ie400284v

    Article  CAS  Google Scholar 

  • Wiebe R, Gaddy VL (1939) The solubility in water of carbon dioxide at 50, 75 and 100° at pressures to 700 atmospheres. J Am Chem Soc 61:315–318

    Article  CAS  Google Scholar 

  • Wilhelm FG (2001) Bipolar membrane electrodialysis-membrane development and transport characteristics. Twente University Press, 2001

  • Wogelius RA, Walther JV (1992) Olivine dissolution kinetics at near-surface. Condition Chem Geol 97:101–112

    Article  CAS  Google Scholar 

  • World Energy Outlook (2012) International Energy Agency (IEA). doi:10.1007/s11356-016-6512-9

  • Xie H et al (2013) Simultaneous mineralization of CO2 and recovery of soluble potassium using earth-abundant potassium feldspar. Chin Sci Bull 58:128–132. doi:10.1007/s11434-012-5466-7

    Article  CAS  Google Scholar 

  • Yeh JT, Pennline HW, Resnik KP (2004) Absorption and regeneration studies for CO2 capture by aqueous ammonia//Third Annual Conference on Carbon Capture & Sequestration, Alexndria, VA. 2004

  • Yu C-H, Huang C-H, Tan C-S (2012) A review of CO2 capture by absorption and adsorption. Aerosol Air Qual Res 12:745–769

    CAS  Google Scholar 

  • Zevenhoven R, Fagerlund J (2010) Fixation of carbon dioxide into inorganic carbonates: the natural and artificial “weathering of silicates”. In: Aresta M (ed) Carbon dioxide as chemical feedstock. WILEY-VCH Verlag GmbH & Co. KGaA

  • Zevenhoven R, Fagerlund J (2010) Fixation of carbon dioxide into inorganic carbonates: the natural and artificial “weathering of silicates”. Carbon Dioxide Chem Feed 2010:353–379

  • Zhang J, Zhang R, Geerlings H, Bi J (2011) Mg-silicate carbonation based on an HCl- and NH3-recyclable process: effect of carbonation temperature. Chem Eng Technol 35:525–531

    Article  CAS  Google Scholar 

  • Zhao H, Park Y, Lee DH, Park A-HA (2013) Tuning the dissolution kinetics of wollastonite via chelating agents for CO2 sequestration with integrated synthesis of precipitated calcium carbonates. Phys Chem Chem Phys 15:15185–15192. doi:10.1039/c3cp52459k

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Keith Carpenter for having faith and continuing to support the work done by the team on this topic, as well as Mr. Isaac Chua for his assistance in re-graphing some of the figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bu Jie.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuen, Y.T., Sharratt, P.N. & Jie, B. Carbon dioxide mineralization process design and evaluation: concepts, case studies, and considerations. Environ Sci Pollut Res 23, 22309–22330 (2016). https://doi.org/10.1007/s11356-016-6512-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6512-9

Keywords

Navigation