Skip to main content

Advertisement

Log in

Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite “greenhouse gas removal,” to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CCS:

Carbon capture and sequestration

CDR:

Carbon dioxide removal

GH:

Greenhouse

GHG:

Greenhouse gas

GW:

Global warming

IPCC:

Intergovernmental Panel on Climate Change

MOF:

metal organic framework

N2O:

Nitrous oxide

PCR:

Photocatalytic reactor

SCPP:

Solar chimney power plant

References

  • Ackley MW, Rege SU, Saxena H (2003) Application of natural zeolites in the purification and separation of gases. Microporous Mesoporous Mater 61:25–42

    Article  CAS  Google Scholar 

  • Águia C, Ângelo J, Madeira LM, Mendes A (2011) Photo-oxidation of NO using an exterior paint–screening of various commercial titania in powder pressed and paint films. J Environ Manag 92:1724–1732

    Article  CAS  Google Scholar 

  • Alyea F, Cunnold D, Prinn R (1978). Meteorological constraints on tropospheric halocarbon and nitrous oxide destructions by siliceous land surfaces. Atmos Environ 12:1009–1011

    Article  CAS  Google Scholar 

  • American Energy Independence, C.R., accessed 5 July 2015. http://www.americanenergyindependence.com/recycleco2.aspx

  • Ângelo J, Andrade L, Madeira LM, Mendes A (2013) An overview of photocatalysis phenomena applied to NO x abatement. J Environ Manag 129:522–539

    Article  CAS  Google Scholar 

  • Anpo M, Aikawa N, Kubokawa Y, Che M, Louis C, Giamello E (1985) Photoformation and structure of oxygen anion radicals (O2-) and nitrogen-containing anion radicals adsorbed on highly dispersed titanium oxide anchored onto porous Vycor glass. J Phys Chem 89:5689–5694

    Article  CAS  Google Scholar 

  • Anpo M, Matsuoka M, Hano K, Mishima H, Ono T, Yamashita H (1997) Photocatalytic decomposition of N2O on Cu+/Y-zeolite catalysts prepared by ion-exchange. Korean J Chem Eng 14:498–501

    Article  CAS  Google Scholar 

  • Anpo M, Matsuoka M, Hanou K, Mishima H, Yamashita H, Patterson H (1998) The relationship between the local structure of copper (I) ions on Cu+/zeolite catalysts and their photocatalytic reactivities for the decomposition of NOx into N2 and O2 at 275 K. Coord Chem Rev 171:175–184

    Article  CAS  Google Scholar 

  • Babbin AR, Bianchi D, Jayakumar A, Ward BB (2015) Rapid nitrous oxide cycling in the suboxic ocean. Science 348:1127–1129

    Article  CAS  Google Scholar 

  • Beaulieu J, Shuster W, Rebholz J (2010) Nitrous oxide emissions from a large, impounded river: the Ohio River. Environ Sci Technol 44:7527–7533

    Article  CAS  Google Scholar 

  • Beaulieu JJ, Tank JL, Hamilton SK, Wollheim WM, Hall RO, Mulholland PJ, Peterson BJ, Ashkenas LR, Cooper LW, Dahm CN (2011) Nitrous oxide emission from denitrification in stream and river networks. Proc Natl Acad Sci 108:214–219

    Article  CAS  Google Scholar 

  • Blyholder G, Tanaka K (1971) Photocatalytic reactions on semiconductor surfaces. I Decomposition of nitrous oxide on zinc oxide. J Phys Chem 75:1037–1043

    Article  CAS  Google Scholar 

  • Boonen E, Beeldens A (2014) Recent photocatalytic applications for air purification in belgium. Coatings 4:553–573

    Article  CAS  Google Scholar 

  • Caldecott B, Lomax G, Workman M (2015) Stranded Carbon Assets and Negative Emissions Technologies. http://www.ilcambiamento.it/files/Carbon_oxford.pdf

  • Caldeira K, Bala G, Cao L (2013) The science of geoengineering. Annu Rev Earth Planet Sci 41:231–256

    Article  CAS  Google Scholar 

  • Cao L, Caldeira K (2010) Atmospheric carbon dioxide removal: long-term consequences and commitment. Environ Res Lett 5:024011

    Article  CAS  Google Scholar 

  • Cao Q, Pui DY, Lipiński W (2015) A Concept of a Novel Solar-Assisted Large-Scale Cleaning System (SALSCS) for Urban Air Remediation. Aerosol Air Qual Res 15:1–10

    Google Scholar 

  • Carbon Engineering: Industrial-scale capture of CO2 from ambient air https://www.youtube.com/watch?t=374&v=GkEAA7VnyhE accessed 28 June 2015.

  • Centi G, Perathoner S (2012) Reduction of greenhouse gas emissions by catalytic processes, Handbook of Climate Change Mitigation. Springer, 1849–1890

  • Centi G, Generali P, Dall'Olio L, Perathoner S, Rak Z (2000a) Removal of N2O from industrial gaseous streams by selective adsorption over metal-exchanged zeolites. Ind Eng Chem Res 39:131–137

    Article  CAS  Google Scholar 

  • Centi G, Perathoner S, Vazzana F, Marella M, Tomaselli M, Mantegazza M (2000b) Novel catalysts and catalytic technologies for N 2 O removal from industrial emissions containing O 2, H 2 O and SO 2. Adv Environ Res 4:325–338

    Article  Google Scholar 

  • Centi G, Arena G, Perathoner S (2003) Nanostructured catalysts for NOx storage–reduction and N2O decomposition. J Catal 216:443–454

    Article  CAS  Google Scholar 

  • Chen H, Matsuoka M, Zhang J, Anpo M (2006) Investigations on the effect of Mn ions on the local structure and photocatalytic activity of Cu (I)-ZSM-5 catalysts. J Phys Chem B 110:4263–4269

    Article  CAS  Google Scholar 

  • Costa A, Chiarello GL, Selli E, Guarino M (2012) Effects of TiO 2 based photocatalytic paint on concentrations and emissions of pollutants and on animal performance in a swine weaning unit. J Environ Manag 96:86–90

    Article  CAS  Google Scholar 

  • Cunningham J, Kelly JJ, Penny A (1970) Reactions involving electron transfer at semiconductor surfaces. I. Dissociation of nitrous oxide over n-type semiconductors at 20. deg. J Phys Chem 74:1992–2000

    Article  CAS  Google Scholar 

  • Cunningham J, Kelly JJ, Penny A (1971) Reactions involving electron transfer at semiconductor surfaces. II Photoassisted dissociation of nitrous oxide over illuminated ferric oxide and zinc oxides. J Phys Chem 75:617–625

    Article  CAS  Google Scholar 

  • Dell R, Stone F, Tiley P (1953) The decomposition of nitrous oxide on cuprous oxide and other oxide catalysts. Trans Faraday Soc 49:201–209

    Article  CAS  Google Scholar 

  • Dolan WB, Zarchy AS, Patel KM, Cowan TM, Davis MM (2000) Selective adsorption of nitrous oxide from waste stream containing oxygen and nitrogen onto zeolite bed to provide a nitrous oxide product essentially free of oxygen; continuous processing. U.S. Patent No 6,080,226. Google Patents

  • Ebitani K, Morokuma M, Kim J-H, Morikawa A (1993a) Evidence for the Role of Monovalent Copper Ions in the Photocatalytic N2O Decomposition on Excessively Copper Ion-Containing ZSM-5 Zeolite. Bull Chem Soc Jpn 66:3811–3812

    Article  CAS  Google Scholar 

  • Ebitani K, Morokuma M, Kim J, Morikawa A (1993b) Photocatalytic decomposition of nitrous oxide on Cu ion-containing ZSM-5 catalyst. J Catal 141:725–728

    Article  CAS  Google Scholar 

  • Ebitani K, Morokuma M, Kim J-H, Morikawa A (1994a) Photocatalytic decomposition of dinitrogen oxide on Cu-containing ZSM-5 catalyst. J. Chem. Soc. Faraday Trans 90:377–381

    Article  CAS  Google Scholar 

  • Ebitani K, Morokuma M, Morikawa A (1994b) Active state of copper in copper-containing ZSM-5 zeolites for photocatalytic decomposition of dinitrogen monoxide. Stud Surf Sci Catal 84:1501–1506

    Article  CAS  Google Scholar 

  • Ebitani K, Hirano Y, Morikawa A (1995) Rare earth ions as heterogeneous photocatalysts for the decomposition of dinitrogen monoxide (N2O). J Catal 157:262–265

    Article  CAS  Google Scholar 

  • Ebitani K, Nishi A, Hirano Y, Yoshida H, Tanaka T, Mizugaki T, Kaneda K, Morikawa A (2001) XAFS study on active Pr sites in zeolite as a photocatalyst for decomposition of nitrous oxide. J Synchrotron Radiat 8:481–483

    Article  CAS  Google Scholar 

  • Enviromission, accessed 30 May 2015. http://www.enviromission.com.au/EVM/ShowStaticCategory.aspx?CategoryID=226

  • Fasel HF, Meng F, Shams E, Gross A (2013) CFD analysis for solar chimney power plants. Sol Energy 98:12–22

    Article  Google Scholar 

  • Fluri T, Pretorius J, Van Dyk C, Von Backström T, Kröger D, Van Zijl G (2009) Cost analysis of solar chimney power plants. Sol Energy 83:246–256

    Article  CAS  Google Scholar 

  • Folli A, Strøm M, Madsen TP, Henriksen T, Lang J, Emenius J, Klevebrant T, Nilsson Å (2015) Field study of air purifying paving elements containing TiO2. Atmos Environ 107:44–51

    Article  CAS  Google Scholar 

  • Francke W, de Richter R, Petersen O, Petersen J (2013) A realistic growth path for solar wind power, applied mechanics and materials. Trans Tech Publ 57–64

  • Gäb S, Schmitzer J, Turner WV, Korte F (1980) Mineralization of CCl4 and CCl2F2 on Solid Surfaces. Zeitschrift für Naturforschung B 35:946–952

    Article  Google Scholar 

  • Gallus M, Ciuraru R, Mothes F, Akylas V, Barmpas F, Beeldens A, Bernard F, Boonen E, Boréave A, Cazaunau M (2015) Photocatalytic abatement results from a model street canyon. Environ Sci Poll Res 1–12

  • Gankanda A, Grassian VH (2014) Nitrate photochemistry on laboratory proxies of mineral dust aerosol: wavelength dependence and action spectra. J Phys Chem C 118:29117–29125

    Article  CAS  Google Scholar 

  • Gaya UI, Abdullah AH (2008) Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. J Photochem Photobiol C: Photochem Rev 9:1–12

    Article  CAS  Google Scholar 

  • George C, Ammann M, D'Anna B, Donaldson DJ, Nizkorodov SA (2015) Heterogeneous photochemistry in the atmosphere. Chem Rev 115:4218–4258

    Article  CAS  Google Scholar 

  • Gerard D, Wilson EJ (2009) Environmental bonds and the challenge of long-term carbon sequestration. J Environ Manag 90:1097–1105

    Article  Google Scholar 

  • Golden TC, Taylor FW, Salter EH, Kalbassi MA, Raiswell CJ (2004) Process for nitrous oxide removal . U.S. Patent No 6,719,827

  • Gonzalez M, Taddonio KN, Sherman NJ (2015) The Montreal Protocol: how today’s successes offer a pathway to the future. J Environ Stud Sci 5:122–129

    Article  Google Scholar 

  • Guarino M, Costa A, Porro M (2008) Photocatalytic TiO 2 coating—to reduce ammonia and greenhouse gases concentration and emission from animal husbandries. Bioresour Technol 99:2650–2658

    Article  CAS  Google Scholar 

  • Guesten H (1986) Photocatalytic degradation of atmospheric pollutants on the surface of metal oxides, Chemistry of multiphase atmospheric systems. Springer, pp. 567–592

  • Haaf W (1984) Solar chimneys: part ii: preliminary test results from the Manzanares pilot plant. Int J Sustain Energy 2:141–161

    Google Scholar 

  • Haaf W, Friedrich K, Mayr G, Schlaich J (1983) Solar chimneys part I: principle and construction of the pilot plant in Manzanares. Int J Solar Energy 2:3–20

    Article  Google Scholar 

  • Harte R, Höffer R, Krätzig WB, Mark P, Niemann H-J (2013) Solar updraft power plants: engineering structures for sustainable energy generation. Eng Struct 56:1698–1706

    Article  Google Scholar 

  • Henderson MA, Szanyi J, Peden CH (2003) Conversion of N2O to N2 on TiO2 (1 1 0). Catal Today 85:251–266

    Article  CAS  Google Scholar 

  • Holmes G, Nold K, Walsh T, Heidel K, Henderson MA, Ritchie J, Klavins P, Singh A, Keith DW (2013) Outdoor prototype results for direct atmospheric capture of carbon dioxide. Energy Procedia 37:6079–6095

    Article  CAS  Google Scholar 

  • IPCC_AR5, 2013. http://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_Annexes.pdf accessed May 24, 2015.

  • Jiang H, Wang H, Liang F, Werth S, Schiestel T, Caro J (2009) Direct decomposition of nitrous oxide to nitrogen by in situ oxygen removal with a perovskite membrane. Angew Chem Int Ed 48:2983–2986

    Article  CAS  Google Scholar 

  • Ju W-S, Matsuoka M, Anpo M (2001a) The photocatalytic reduction of nitrous oxide with propane on lead (II) ion-exchanged ZSM-5 catalysts. Catal Lett 71:91–93

    Article  CAS  Google Scholar 

  • Ju W-S, Matsuoka M, Yamashita H, Anpo M (2001b) Local structure of Pb (II) ion catalysts anchored within zeolite cavities and their photocatalytic reactivity for the elimination of N2O. J Synchrotron Radiat 8:608–609

    Article  CAS  Google Scholar 

  • Ju W-S, Matsuoka M, Anpo M (2003) Incorporation of silver (I) ions within zeolite cavities and their photocatalytic reactivity for the decomposition of N 2 O into N 2 and O 2. Int J Photoenergy 5:17–19

    Article  CAS  Google Scholar 

  • Ju W-S, Matsuoka M, Iino K, Yamashita H, Anpo M (2004) The local structures of silver (I) ion catalysts anchored within zeolite cavities and their photocatalytic reactivities for the elimination of N2O into N2 and O2. J Phys Chem B 108:2128–2133

    Article  CAS  Google Scholar 

  • Junge C, Bockholt B, Schutz K, Beck R (1971) N2O measurements in air and seawater over the Atlantic. Meteor. Forsch. Ergebrisse. Reihe B 6:1

    Google Scholar 

  • Kapteijn F, Rodriguez-Mirasol J, Moulijn JA (1996) Heterogeneous catalytic decomposition of nitrous oxide. Appl Catal B Environ 9:25–64

    Article  CAS  Google Scholar 

  • Kiesgen de Richter R, Ming T, Caillol S (2013) Fighting global warming by photocatalytic reduction of CO 2 using giant photocatalytic reactors. Renew Sust Energ Rev 19:82–106

    Article  CAS  Google Scholar 

  • Kim B, Li Z, Kay BD, Dohnálek Z, Kim YK (2011) Unexpected Nondissociative Binding of N2O on Oxygen Vacancies on a Rutile TiO2 (110)-1 × 1. J Phys Chem C 116:1145–1150

    Article  CAS  Google Scholar 

  • Kočí K, Krejčíková S, Šolcová O, Obalová L (2012) Photocatalytic decomposition of N2O on Ag-TiO2. Catal Today 191:134–137

    Article  CAS  Google Scholar 

  • Kočí K, Matějová L, Obalová L, Čapek L, Wu JC (2015) Preparation, characterization and photocatalytic performance of TiO2 prepared by using pressurized fluids in CO2 reduction and N2O decomposition. J Sol–gel Sci Technol 1–9

  • Kolinko P, Kozlov D (2009) Products distribution during the gas phase photocatalytic oxidation of ammonia over the various titania based photocatalysts. Appl Catal B Environ 90:126–131

    Article  CAS  Google Scholar 

  • Krätzig WB (2012) Solar updraft power technology: State and advances of low-concentrated thermal solar power generation. VGB powertech

  • Kratzig WB (2013) Physics, computer simulation and optimization of thermo-fluidmechanical processes of solar updraft power plants. Sol Energy 98:2–11

    Article  Google Scholar 

  • Krätzig WB (2013) Physics, computer simulation and optimization of thermo-fluidmechanical processes of solar updraft power plants. Sol Energy 98:2–11

    Article  Google Scholar 

  • Kroger D, Blaine D (1999) Analysis of the driving potential of a solar chimney power plant. SAI Mech E R&D J 15:85–94

    Google Scholar 

  • Kudo A, Nagayoshi H (1998) Photocatalytic reduction of N2O on metal-supported TiO2 powder at room temperature in the presence of H2O and CH3OH vapor. Catal Lett 52:109–111

    Article  CAS  Google Scholar 

  • Kudo A, Sakata T (1992) Photocatalytic Decomposition of N2O at Room Temperature. Chem Lett 2381–2384

  • Lackner KS, Brennan S, Matter JM, Park A-HA, Wright A, Van Der Zwaan B (2012) The urgency of the development of CO2 capture from ambient air. Proc Natl Acad Sci 109:13156–13162

    Article  CAS  Google Scholar 

  • Leung DY, Caramanna G, Maroto-Valer MM (2014) An overview of current status of carbon dioxide capture and storage technologies. Renew Sust Energ Rev 39:426–443

    Article  CAS  Google Scholar 

  • Lupi F, Borri C, Harte R, Krätzig W, Niemann H-J (2015) Facing technological challenges of solar updraft power plants. J Sound Vib 334:57–84

    Article  Google Scholar 

  • MacMynowski DG, Keith DW, Caldeira K, Shin H-J (2011) Can we test geoengineering? Energy Environ Sci 4:5044–5052

    Article  Google Scholar 

  • Malato S, Fernández-Ibánez P, Maldonado MI, Oller I, Polo-López MI, Pichat P (2013) Solar photocatalytic pilot plants: commercially available reactors. Wiley-VCH Verlag, Weinheim

    Google Scholar 

  • Matějová L, Šihor M, Brunátová T, Ambrožová N, Reli M, Čapek L, Obalová L, Kočí K (2015) Microstructure-performance study of cerium-doped TiO2 prepared by using pressurized fluids in photocatalytic mitigation of N2O. Res Chem Int 1–15

  • Matsuoka M, Anpo M (2003) Local structures, excited states, and photocatalytic reactivities of highly dispersed catalysts constructed within zeolites. J Photochem Photobiol C: Photochem Rev 3:225–252

    Article  CAS  Google Scholar 

  • Matsuoka M, Takahashi K, Yamashita H, Anpo M (1997) Local Structures of Copper Ion Catalysts Anchored onto Various Oxide Supports and their Photocatalytic Reactivities for the Decomposition of N2O at 298 K. In Situ XAFS, Photoluminescence, EPR Investigations. Le J de Phys IV 7, C2-943-C942-944

  • Matsuoka M, Ju W-S, Takahashi K, Yamashita H, Anpo M (2000) Photocatalytic decomposition of N2O into N2 and O2 at 298 K on Cu (I) ion catalysts anchored onto various oxides. The effect of the coordination state of the Cu (I) ions on the photocatalytic reactivity. J Phys Chem B 104:4911–4915

    Article  CAS  Google Scholar 

  • Matsuoka M, Ju W-S, Yamashita H, Anpo M (2001) Investigations on the local structure of Ag+/ZSM-5 catalysts and their photocatalytic reactivities for the decomposition of N2O at 298 K. J Synchrotron Radiat 8:613–615

    Article  CAS  Google Scholar 

  • Matsuoka M, Ju W-S, Yamashita H, Anpo M (2003) In situ characterization of the Ag + ion-exchanged zeolites and their photocatalytic activity for the decomposition of N 2 O into N 2 and O 2 at 298 K. J Photochem Photobiol A Chem 160:43–46

    Article  CAS  Google Scholar 

  • Matthews HD, Caldeira K (2008) Stabilizing climate requires near-zero emissions. Geophys Res Lett 35

  • Ming T, Liu W, Pan Y, Xu G (2008) Numerical analysis of flow and heat transfer characteristics in solar chimney power plants with energy storage layer. Energy Convers Manag 49:2872–2879

    Article  CAS  Google Scholar 

  • Ming T, Richter RK, Meng F, Pan Y, Liu W (2013) Chimney shape numerical study for solar chimney power generating systems. Int J Energy Res 37:310–322

    Article  Google Scholar 

  • Ming T, de Richter R, Liu W, Caillol S (2014) Fighting global warming by climate engineering: is the Earth radiation management and the solar radiation management any option for fighting climate change? Renew Sust Energ Rev 31:792–834

    Article  Google Scholar 

  • Ming T, Wu Y, de Richter R, Liu W, Höffer R, Niemann H-J, Krätzig WB (2015) Fighting global warming and droughts with engineering structures for sustainable energy and water generation. Renew Sustain Energy Rev

  • Mo J, Zhang Y, Xu Q, Lamson JJ, Zhao R (2009) Photocatalytic purification of volatile organic compounds in indoor air: a literature review. Atmos Environ 43:2229–2246

    Article  CAS  Google Scholar 

  • Ndour M, Nicolas M, D’Anna B, Ka O, George C (2009) Photoreactivity of NO2 on mineral dusts originating from different locations of the Sahara desert. Phys Chem Chem Phys 11:1312–1319

    Article  CAS  Google Scholar 

  • Obalová L, Reli M, Lang J, Matějka V, Kukutschová J, Lacný Z, Kočí K (2013) Photocatalytic decomposition of nitrous oxide using TiO 2 and Ag-TiO 2 nanocomposite thin films. Catal Today 209:170–175

    Article  CAS  Google Scholar 

  • Obalová L, Šihor M, Praus P, Reli M, Kočí K (2014) Photocatalytic and photochemical decomposition of N2O on ZnS-MMT catalyst. Catal Today 230:61–66

    Article  CAS  Google Scholar 

  • Park H, Park Y, Kim W, Choi W (2013) Surface modification of TiO 2 photocatalyst for environmental applications. J Photochem Photobiol C: Photochem Rev 15:1–20

    Article  CAS  Google Scholar 

  • Patel SK, Prasad D, Ahmed MR (2014) Computational studies on the effect of geometric parameters on the performance of a solar chimney power plant. Energy Convers Manag 77:424–431

    Article  Google Scholar 

  • Paz Y (2010)_ Composite Titanium Dioxide Photocatalysts and the" Adsorb & Shuttle" Approach: A Review, Solid State Phenomena. Trans Tech Publ 135–162

  • Pichat P, Disdier J, Hoang-Van C, Mas D, Goutailler G, Gaysse C (2000) Purification/deodorization of indoor air and gaseous effluents by TiO 2 photocatalysis. Catal Today 63:363–369

    Article  CAS  Google Scholar 

  • Pierotti D, Rasmussen L, Rasmussen R (1978) The Sahara as a possible sink for trace gases. Geophys Res Lett 5:1001–1004

    Article  CAS  Google Scholar 

  • Prado R, Beobide G, Marcaide A, Goikoetxea J, Aranzabe A (2010) Development of multifunctional sol–gel coatings: anti-reflection coatings with enhanced self-cleaning capacity. Sol Energy Mater Sol Cells 94:1081–1088

    Article  CAS  Google Scholar 

  • Pretorius JP (2007) Optimization and control of a large-scale solar chimney power plant. University of Stellenbosch, Stellenbosch

    Google Scholar 

  • Pretorius J, Kröger D (2008) Incorporating vegetation under the collector roof of a solar chimney power plant. R & D J S Afr Inst Mech Eng 24:3–11

    Google Scholar 

  • Rabani J, Goldstein S (2013) Mechanisms of Reactions Induced by Photocatalysis of Titanium Dioxide Nanoparticles. Environ Photochem Part III; Handbook Environ Chem 35:115–157

    Article  Google Scholar 

  • Rakhmawaty D, Matsuoka M, Anpo M (2008) Photocatalytic decomposition of N2O in the presence of CO on Ti/USY photocatalysts. , in: http://chemistry.unpad.ac.id/isc-proceeding/2008/Pdf/OP/0342-0345%20Diana.pdf (Ed.), Proceeding of The International Seminar on Chemistry; ISBN 978-979-18962-0-7, Jatinangor 342–345

  • Ravishankara A, Daniel JS, Portmann RW (2009) Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326:123–125

    Article  CAS  Google Scholar 

  • Rebbert R, Ausloos P (1978) Decomposition of nitrous oxide and chloromethanes absorbed on particulate matter., WMO Symposium on the Geophysical Aspects and Consequences of Changes in the Composition of the Stratosphere, Toronto 26–30 June 1978. Secretariat to World Meteorological Organization 31

  • Rebbert RE, Ausloos P (1978b) Decomposition of N2O over particulate matter. Geophys Res Lett 5:761–764

    Article  CAS  Google Scholar 

  • Rusu C, Yates J (2001) N2O adsorption and photochemistry on high area TiO2 powder. J Phys Chem B 105:2596–2603

    Article  CAS  Google Scholar 

  • Saha D, Bao Z, Jia F, Deng S (2010) Adsorption of CO2, CH4, N2O, and N2 on MOF-5, MOF-177, and zeolite 5A. Environ Sci Technol 44:1820–1826

    Article  CAS  Google Scholar 

  • Sano T, Negishi N, Mas D, Takeuchi K (2000) Photocatalytic decomposition of N2O on highly dispersed Ag + ions on TiO2 prepared by photodeposition. J Catal 194:71–79

    Article  CAS  Google Scholar 

  • Schlaich J (1995) The solar chimney: electricity from the sun. Edition Axel Menges

  • Schlaich J, Bergermann R, Schiel W, Weinrebe G (2005a) Design of commercial solar updraft tower systems - Utilization of solar induced convective flows for power generation. J Solar Energy Eng-Trans Asme 127:117–124

    Article  Google Scholar 

  • Schlaich J, Bergermann R, Schiel W, Weinrebe G (2005b) Design of commercial solar updraft tower systems—utilization of solar induced convective flows for power generation. J Solar Energy Eng 127:117–124

    Article  Google Scholar 

  • Schlaich, Bergermann and Partners, SBP website: www.sbp.de, accessed on 30 May 2015, and www.solar-updrafttower.com/en#technical_concept/principle

  • Shepherd J (2009) Geoengineering the climate: science, governance and uncertainty. http://eprints.soton.ac.uk/156647/1/Geoengineering_the_climate.pdf accessed 02-06-2015. Royal Society

  • Solomon S, Plattner G-K, Knutti R, Friedlingstein P (2009) Irreversible climate change due to carbon dioxide emissions. Proc Natl Acad Sci 106:1704–1709

    Article  CAS  Google Scholar 

  • Solomon S, Daniel JS, Sanford TJ, Murphy DM, Plattner G-K, Knutti R, Friedlingstein P (2010) Persistence of climate changes due to a range of greenhouse gases. Proc Natl Acad Sci 107:18354–18359

    Article  CAS  Google Scholar 

  • Styler SA (2014) Heterogeneous photochemistry of atmospheric dusts and organic films. Doctoral dissertation, University of Toronto. 244p

  • Syakila A, Kroeze C (2011) The global nitrous oxide budget revisited. Greenh Gas Meas Manag 1:17–26

    Article  CAS  Google Scholar 

  • Tachibana Y, Vayssieres L, Durrant JR (2012) Artificial photosynthesis for solar water-splitting. Nat Photonics 6:511–518

    Article  CAS  Google Scholar 

  • Taghizadeh-Toosi A, Clough TJ, Condron LM, Sherlock RR, Anderson CR, Craigie RA (2011) Biochar incorporation into pasture soil suppresses in situ nitrous oxide emissions from ruminant urine patches. J Environ Qual 40:468–476

    Article  CAS  Google Scholar 

  • Tanaka K-I, Blyholder G (1970). Photocatalytic and thermal catalytic decomposition of nitrous oxide on zinc oxide. J Chem Soc D: Chem Commun, 1130–1131

  • Tang M, Telford P, Pope F, Rkiouak L, Abraham N, Archibald A, Braesicke P, Pyle J, McGregor J, Watson I (2014) Heterogeneous reaction of N 2 O 5 with airborne TiO 2 particles and its implication for stratospheric particle injection. Atmos Chem Phys 14:6035–6048

    Article  CAS  Google Scholar 

  • Tang M, Keeble J, Telford P, Pope F, Rkiouak L, Abraham L, Braesicke P, Pyle J, Mcgregor J, Watson M (2015) Heterogeneous reactions of TiO2 aerosol particles with N2O5 and ClONO2 and their implications for stratospheric particle injection, EGU Gen Assem Conf Abstr 1863

  • Tingzhen M, Wei L, Guoliang X (2006) Analytical and numerical investigation of the solar chimney power plant systems. Int J Energy Res 30:861–873

    Article  Google Scholar 

  • Tingzhen M, Wei L, Guoling X, Yanbin X, Xuhu G, Yuan P (2008) Numerical simulation of the solar chimney power plant systems coupled with turbine. Renew Energy 33:897–905

    Article  Google Scholar 

  • United Nations Department of Economic and Social Affairs, P.D., New York (2014) World Population Prospects: The 2012 Revision, Methodology of the United Nations Population Estimates and Projections, Working Paper No. ESA/P/WP.235

  • Usher CR, Michel AE, Grassian VH (2003) Reactions on mineral dust. Chem Rev 103:4883–4940

    Article  CAS  Google Scholar 

  • Vichi M, Navarra A, Fogli P (2013) Adjustment of the natural ocean carbon cycle to negative emission rates. Clim Chang 118:105–118

    Article  CAS  Google Scholar 

  • Wanbayor R, Ruangpornvisuti V (2010) Adsorption of CO, H2, N2O, NH3 and CH4 on the anatase TiO2 (001) and (101) surfaces and their competitive adsorption predicted by periodic DFT calculations. Mater Chem Phys 124:720–725

    Article  CAS  Google Scholar 

  • Weisenstein D, Keith D (2015) Solar geoengineering using solid aerosol in the stratosphere. Atmos Chem Phys Dis 15:11799–11851

    Article  Google Scholar 

  • Winter E (1971) The catalytic decomposition of nitric oxide by metallic oxides. J Catal 22:158–170

    Article  CAS  Google Scholar 

  • Wong N-B, Lunsford JH (1971) EPR study of 17O-on magnesium oxide. J Chem Phys 55:3007–3012

    Article  CAS  Google Scholar 

  • Wong NB, Taarit YB, Lunsford JH (1974) Formation of O− in ZnO from the dissociation of adsorbed N2O. J Chem Phys 60:2148–2151

    Article  CAS  Google Scholar 

  • Xia H, Sun K, Feng Z, Li C (2010) Effect of Water on Active Iron Sites for N2O Decomposition over Fe/ZSM-5 Catalyst. J Phys Chem C 115:542–548

    Article  CAS  Google Scholar 

  • Yaghoubi H, Taghavinia N, Alamdari EK (2010) Self cleaning TiO 2 coating on polycarbonate: surface treatment, photocatalytic and nanomechanical properties. Surf Coat Technol 204:1562–1568

    Article  CAS  Google Scholar 

  • Yanai Y, Toyota K, Okazaki M (2007) Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Sci Plant Nutr 53:181–188

    Article  CAS  Google Scholar 

  • Zabloudilova P, Pecen J, Petrackova B, Dolejs J (2010) Influence of photocatalytic TiO2 coating on gaseous emissions, odour and microbiological contamination in stable environment within animal husbandries, NANOCON International Conference. http://konsys-t.tanger.cz/files/proceedings/nanocon_10/lists/papers/573.pdf 258–263

  • Zamaraev KI, Khramov MI, Parmon VN (1994) Possible impact of heterogeneous photocatalysis on the global chemistry of the Earth's atmosphere. Catal Rev —Sci Eng 36:617–644

    Article  CAS  Google Scholar 

  • Zeman FS, Keith DW (2008) Carbon neutral hydrocarbons. Philos Trans R Soc Lond A: Math Phys Eng Sci 366:3901–3918

    Article  CAS  Google Scholar 

  • Zhang Y, Yang R, Zhao R (2003) A model for analyzing the performance of photocatalytic air cleaner in removing volatile organic compounds. Atmos Environ 37:3395–3399

    Article  CAS  Google Scholar 

  • Zhang A, Cui L, Pan G, Li L, Hussain Q, Zhang X, Zheng J, Crowley D (2010) Effect of biochar amendment on yield and methane and nitrous oxide emissions from a rice paddy from Tai Lake plain, China. Agric Ecosyst Environ 139:469–475

    Article  CAS  Google Scholar 

  • Zhou X, Wang F, Ochieng RM (2010) A review of solar chimney power technology. Renew Sust Energ Rev 14:2315–2338

    Article  Google Scholar 

  • Zongker JD (2013) Life cycle assessment of Solar Updraft Tower Power Plant: EROEI and GWP as a design tool. Wichita State University

Download references

Acknowledgments

This research work was supported in part by the National Natural Science Foundation of China 51106060) and in part by the Energy Saving of Wuhan MRT under Operation. The co-authors of this article would like to express their thanks to the two anonymous reviewers, for providing insightful comments and constructive advice that substantially improved the technicality of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renaud de_Richter.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ming, T., de_Richter, R., Shen, S. et al. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies. Environ Sci Pollut Res 23, 6119–6138 (2016). https://doi.org/10.1007/s11356-016-6103-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6103-9

Keywords

Navigation