Skip to main content
Log in

Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Zeolite was synthesized from coal fly ash by a fusion method and was used for the removal of heavy metal ions (Pb2+, Cd2+, Cu2+, Ni2+, and Mn2+) in aqueous solutions. Batch method was employed to study the influential parameters such as adsorbent dosage, pH, and coexisting cations. Adsorption isotherms and kinetics studies were carried out in single-heavy and multiheavy metal systems, respectively. The Langmuir isotherm model fitted to the equilibrium data better than the Freundlich model did, and the kinetics of the adsorption were well described by the pseudo-second-order model, except for Cd2+ and Ni2+ ions which were fitted for the pseudo-first-order model in the multiheavy metal system. The maximum adsorption capacity and the distribution coefficients exhibited the same sequence for Pb2+ > Cu2+ > Cd2+ > Ni2+ > Mn2+ in both single- and multiheavy metal systems. In the end, the adsorption capacity of zeolite was tested using industrial wastewaters and the results demonstrated that zeolite could be used as an alternative adsorbent for the removal of heavy metal ions from industrial wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

XRF:

X-ray fluorescence

XRD:

X-ray diffraction

SEM:

Scanning electron microscope

BET:

Brunauer Emmet teller

FTIR:

Fourier transform infrared

AAS:

Atomic adsorption spectrophotometer

CEC:

Cation exchange capacity

LOI:

Loss on ignition

R :

Removal efficiency

K d :

Distribution coefficients

R 2 :

correlation coefficients

References

  • Ahmaruzzaman M (2010) A review on the utilization of fly ash. Prog Energy Combust Sci 36(3):327–363

    Article  CAS  Google Scholar 

  • Ajjabi LC, Chouba L (2009) Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. J Environ Manage 90:3485–3489

    Article  CAS  Google Scholar 

  • Álvarez-Ayuso E, García-Sánchez A, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37:4855–486

    Article  CAS  Google Scholar 

  • Álvarez-Ayuso E, Querol X, Plana F, Alastuey A, Moreno N, Izquierdo M, Font O, Moreno T, Diez S, Vázquez E, Barra M (2008) Environmental, physical and structural characterization of geopolymer matrixes synthesized from (co-) combustion fly ashes. J Hazard Mater 154:175–183

    Article  CAS  Google Scholar 

  • Ayoob S, Gupta AK, Bhakat PB, Bhat VT (2008) Investigations on the kinetics and mechanisms of sorptive removal of fluoride from water using alumina cement granules. Chem Eng J 140:6–14

    Article  CAS  Google Scholar 

  • Balsamo M, Natale FD, Erot A, Lancia A, Montagnaro F, Santoro L (2011) Cadmium adsorption by coal combustion ashes-based sorbents-relationship between sorbent properties and adsorption capacity. J Hazard Mater 187:371–378

    Article  CAS  Google Scholar 

  • Bandura L, Franus M, Jozefaciuk G, Franus W (2015) Synthetic zeolites from fly ash as effective mineral sorbents for land-based petroleum spills cleanup. Fuel 147:100–107

    Article  CAS  Google Scholar 

  • Barczak M, Michalak-Zwierz K, Gdula K, Tyszczuk-Rotko K, Dobrowolski R, Nbrowski A (2015) Ordered mesoporous carbons as effective sorbents for removal of heavy metal ions. Microporous Mesoporous Mater 211:162–173

    Article  CAS  Google Scholar 

  • Bayat B (2002) Comparative study of adsorption properties of Turkish fly ashes II. The case of chromium (VI) and cadmium (II). J Hazard Mater B95:275–290

    Article  Google Scholar 

  • Boujelben N, Bouzid J, Elouear Z (2009) Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: study in single and binary systems. J Hazard Mater 163:376–382

    Article  CAS  Google Scholar 

  • Bukhari SS, Behin J, Kazemian H, Rohani S (2015) Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review. Fuel 140:250–266

    Article  CAS  Google Scholar 

  • Calvo B, Canoira L, Morante F, Martínez-Bedia JM, Vinagre C, García-González JE, Elsen J, Alcantara R (2009) Continuous elimination of Pb2+, Cu2+, Zn2+, H+ and NH4+ from acidic waters by ionic exchange on natural zeolites. J Hazard Mater 166:619–627

    Article  CAS  Google Scholar 

  • Cho H, Oh D, Kim K (2005) A study on removal characteristics of heavy metals from aqueous solution by fly ash. J Hazard Mater B127:187–195

    Article  CAS  Google Scholar 

  • Covelo EF, Andrade ML, Vega FA (2004) Heavy metal adsorption by humic umbrisols: selectivity sequences and competitive sorption kinetics. J Colloid Interface Sci 280:1–8

    Article  CAS  Google Scholar 

  • Franus W, Wdowin M, Franus M (2014) Synthesis and characterization of zeolites prepared from industrial fly ash. Environ Monit Assess 186:5721–5729

    Article  CAS  Google Scholar 

  • Fu FL, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92:407–418

    Article  CAS  Google Scholar 

  • Höller H, Wirshing U (1985) Zeolite formation from fly ash. Fortschr Mineral 63:21–43

    Google Scholar 

  • Hollman GG, Steenbruggen G, Janssen-Jurkovicova M (1999) A two-step process for the synthesis of zeolites from coal fly ash. Fuel 78:1225–1230

    Article  CAS  Google Scholar 

  • Huang Y, Han M (2011) The influence of α-Al2O3 addition on microstructure, mechanical and formaldehyde adsorption properties of fly ash-based geopolymer products. J Hazard Mater 193:90–94

    Article  CAS  Google Scholar 

  • Hui KS, Chao CYH, Kot SC (2005) Removal of mixed heavy metal ions in wastewater by zeolite 4A and residual products from recycled coal fly ash. J Hazard Mater B127:89–101

    Article  CAS  Google Scholar 

  • Inglezakis VJ, Loizidou MD, Grigoropoulou HP (2002) Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. Water Res 36:2784–2792

    Article  CAS  Google Scholar 

  • Izidoro JDC, Fungaro DA, Abbott JE, Wang SB (2013) Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel 103:827–834

    Article  CAS  Google Scholar 

  • Karnib M, Kabbani A, Holail H, Olama Z (2014) Heavy metals removal using activated carbon, silica and silica activated carbon composite. Energy Procedia 50:113–120

    Article  CAS  Google Scholar 

  • Kyziol-Komosinska J, Rosik-Dulewska C, Franus M, Antoszczyszyn-Szpicka P, Czupiol J, Krzyzewska I (2015) Sorption capacities of natural and synthetic zeolites for Cu(II) ions. Pol J Environ Stud 24:1111–1123

    Article  CAS  Google Scholar 

  • Leinonen H, Lehto J (2001) Purification of metal finishing waste waters with zeolites and activated carbons. Waste Manag Res 19:45–57

    Article  CAS  Google Scholar 

  • Li L, Wang SB, Zhu ZH (2006) Geopolymeric adsorbents from fly ash for dye removal from aqueous solution. J Colloid Interface Sci 300:52–59

    Article  CAS  Google Scholar 

  • Majdan M, Pikus S, Kowalska-Ternes M, Gladysz-Plaska A, Staszczuk P, Fuks L, Skrzypek H (2003) Equilibrium study of selected divalent d-electron metals adsorption on A-type zeolite. J Colloid Interface Sci 262:321–330

    Article  CAS  Google Scholar 

  • Mihaly-Cozmuta L, Mihaly-Cozmuta A, Peter A, Nicula C, Tutu H, Silipas D, Indrea E (2014) Adsorption of heavy metal cations by Na-clinoptilolite: equilibrium and selectivity studies. J Environ Manage 137:69–80

    Article  CAS  Google Scholar 

  • Mohan S, Gandhinathi R (2009) Removal of heavy metal ions from municipal solid waste leachate using coal fly ash as an adsorbent. J Hazard Mater 169:351–359

    Article  CAS  Google Scholar 

  • Ouki SK, Kavannagh M (1997) Perfromance of natural zeolites for the treatment of mixed metal-contaminated effluents. Waste Manag Res 15:383–394

    Article  CAS  Google Scholar 

  • Padervand M, Gholami MR (2013) Removal of toxic heavy metal ions from waste water by functionalized magnetic core-zeolitic shell nanocomposites as adsorbents. Environ Sci Pollut Res 20:3900–3909

    Article  CAS  Google Scholar 

  • Prakash N, Sudha PN, Renganathan NG (2012) Copper and cadmium removal from synthetic industrial wastewater using chitosan and nylon 6. Environ Sci Pollut Res 19:2930–2941

    Article  CAS  Google Scholar 

  • Querol X, Umaña JC, Plana F, Alastuey A, Lopez-Soler A, Medinaceli A, Valero A, Domingo MJ, Garcia-Rojo E (2001) Synthesis of zeolites from fly ash at pilot plant scale. Examples of potential applications. Fuel 80:857–865

    Article  CAS  Google Scholar 

  • Semmens MJ, Seyfarth M (1978) The selectivity of clinoptilolite for certain heavy metals. In: Sand LB, Mumpton FA (eds) Natural zeolites: occurance, properties, use. Pergamon Press Ltd, Oxford, pp 517–526

    Google Scholar 

  • Shi LN, Zhou Y, Chen ZL, Megharaj M, Naidu R (2013) Simultaneous adsorption and degradation of Zn2+ and Cu2+ from wastewater using nanoscale zero-valent iron impregnated with clays. Environ Sci Pollut Res 20:3639–3648

    Article  CAS  Google Scholar 

  • Shigemoto N, Sugiyama S, Hayashi H (1995) Characterization of Na-X, Na-A, and coal fly ash zeolites and their amorphous precursors by IR, MAS NMR and XPS. J Mater Sci 30:5777–5783

    Article  CAS  Google Scholar 

  • Somerset VS, Petrik LF, White RA, Klink MJ, Key D, Iwuoha EI (2005) Alkaline hydrothermal zeolites synthesized from high SiO2 and Al2O3 co-disposal fly ash filtrates. Fuel 84:2324–2329

    Article  CAS  Google Scholar 

  • Sprynskyy M, Buszewski B, Terzyk AP, Namiesnik J (2006) Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite. J Colloid Interface Sci 304:21–28

    Article  CAS  Google Scholar 

  • Vega FA, Covelo EF, Andrade ML (2006) Competitive sorption and desorption of heavy metals in mine soils: influence of mine soil characteristics. J Colloid Interface Sci 298:582–592

    Article  CAS  Google Scholar 

  • Volkov AG, Paula S, Deamer DW (1997) Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem Bioenerg 42:153–160

    Article  CAS  Google Scholar 

  • Wang SB, Lin L, Zhu ZH (2007) Solid-state conversion of fly ash to effective adsorbents for Cu removal from wastewater. J Hazard Mater B139:254–259

    Article  CAS  Google Scholar 

  • Wang SB, Ma Q, Zhu ZH (2008) Characteristics of coal fly ash and adsorption application. Fuel 87:3469–3473

    Article  CAS  Google Scholar 

  • Wdowin M, Franus M, Panek R, Badura L, Franus W (2014) The conversion technology of fly ash into zeolites. Clean Techn Environ Policy 16:1217–1223

    Article  CAS  Google Scholar 

  • Wen Y, Tang ZR, Chen Y, Gu YX (2011) Adsorption of Cr (VI) from aqueous solutions using chitosan-coated fly ash composite as biosorbent. Chem Eng J 175:110–116

    Article  CAS  Google Scholar 

  • Wu DY, Sui YM, He SB, Wang XZ, Cj L, Kong HN (2008) Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. J Hazard Mater 155:415–423

    Article  CAS  Google Scholar 

  • Xu XT, Li Q, Cui H, Pang JF, Sun L, An H, Zhai JP (2010) Adsorption of fluoride from aqueous solution on magnesia-loaded fly ash cenospheres. Desalination 272:233–29

    Article  CAS  Google Scholar 

  • Xu XY, Cao XD, Zhao L, Wang HL, Yu H, Gao B (2013) Removal of Cu, Zn and Cd from aqueous solutions by the dairy manure-derived biochar. Environ Sci Pollut Res 20:358–368

    Article  CAS  Google Scholar 

  • Yaday S, Srivastava V, Banerjee S, Gode F, Sharma YC (2013) Studies on the removal of nickel from aqueous solutions using modified riverbed sand. Environ Sci Pollut Res 20:558–567

    Article  CAS  Google Scholar 

  • Zhan YH, Lin JW, Li J (2013) Preparation and characterization of surfactant-modified hydroxyapatite/zeolite composite and its adsorption behavior toward humic acid and copper (II). Environ Sci Pollut Res 20:2512–2526

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research was financially supported by grants from the Guangdong Province Science and Technology Project (Nos. 2013B090200016 and 2013B021000008), Joint Fund of Guangdong Province (No. U1401235), Major Science and Technology program for the Industry-Academia-Research collaborative Innovation of Guangzhou, and the Electric Power Research Institute of Guangdong Grid Co (No. K-GD2013-0501).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuancai Chen.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, K., Chen, Y., Tang, Z. et al. Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environ Sci Pollut Res 23, 2778–2788 (2016). https://doi.org/10.1007/s11356-015-5422-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5422-6

Keywords

Navigation