Skip to main content
Log in

A comparative study with biologically and chemically synthesized nZVI: applications in Cr (VI) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

In the present communication, we report a comparative study of Cr (VI) removal using biologically synthesized nano zero valent iron (BS-nZVI) and chemically synthesized nZVI (CS-nZVI), both immobilized in calcium alginate beads. The parameters like initial Cr (VI) concentration, nZVI concentration, and the contact time for Cr (VI) removal were optimized based on Box–Behnken design (BBD) by response surface modeling at a constant pH 7. Under the optimized conditions (concentration of nZVI = 1000 mg L−1, contact time = ∼80 min, and initial concentration of Cr (VI) = 10 mg L−1), the Cr (VI) removal by the immobilized BS-nZVI and CS-nZVI alginate beads was 80.04 and 81.08 %, respectively. The adsorption of Cr (VI) onto the surface of alginate beads was confirmed by scanning electron microscopy with energy-dispersive x-ray spectroscopy (SEM-EDX), Fourier transform infrared spectroscopy (FT-IR), and Brunauer–Emmett–Teller (BET) analysis. The applicability of the process using both the sorbents was successfully test medium Cr (VI) spiked environmental water samples. In order to assess the ecotoxic effects of nZVI, the decline in cell viability, generation of intracellular reactive oxygen species (ROS), cell membrane damage, and biouptake was studied at 1000 mg L−1 concentration, with five indigenous bacterial isolates from chromium-contaminated lake sediments and their consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrafioti E, Kalderis D, Diamadopoulos E (2014) Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J Environ Manag 133:309–314

    Article  CAS  Google Scholar 

  • Allabaksh MB, Mandal BK, Kesarla MK, Kumar KS, Reddy PS (2010) Preparation of stable zero valent iron nanoparticles using different chelating agents. J Chem Pharm Res 2(5):67–74

    CAS  Google Scholar 

  • Bezbaruah AN, Krajangpan S, Chisholm BJ, Khan E, Bermudez JJE (2009) Entrapment of iron nanoparticles in calcium alginate beads for groundwater remediation applications. J Hazard Mater 166:1339–1343

    Article  CAS  Google Scholar 

  • Brown DM, Wilson MR, MacNee W, Stone V, Donaldson K (2001) Size-dependent proinflammatory effects of ultrafine polystyrene particles: a role for surface area and oxidative stress in the enhanced activity of ultrafines. Toxicol Appl Pharm 175(3):191–199

    Article  CAS  Google Scholar 

  • Chaudière J, Ferrari-Iliou R (1999) Intracellular antioxidants: from chemical to biochemical mechanisms. Food Chem Toxicol 37(9):949–962

    Article  Google Scholar 

  • Davis AP, Bhatnagar V (1995) Adsorption of cadmium and humic acid onto hematite. Chemosphere 30:243–256

    Article  CAS  Google Scholar 

  • Esfahani AR, Hojati S, Azimi A, Farzadian M, Khataee A (2014) Enhanced hexavalent chromium removal from aqueous solution using a sepiolite-stabilized zero-valent iron nanocomposite: impact of operational parameters and artificial neural network modeling. J Taiwan Inst Chem Eng: 88–98

  • Geranio L (2007) Review of zero valent iron and apatite as reactive materials for permeable reactive barrier. Term Paper: 07

  • Gopalakannana V, Viswanathan N (2015) Synthesis of magnetic alginate hybrid beads for efficient chromium (VI) removal. Int J Biol Macromol 72:862–867

    Article  CAS  Google Scholar 

  • Hiemstra T, Van Riemsdijk WH (1999) Surface structural ion adsorption modeling of competitive binding of oxy anions by metal hydroxides. J Colloid Interface Sci 210:182–193

    Article  CAS  Google Scholar 

  • Huang L, Zhou S, Jin F, Huang J, Bao N (2014) Characterization and mechanism analysis of activated carbon fiber felt-stabilized nano scale zero-valent iron for the removal of Cr (VI) from aqueous solution. Colloid Surf A: Physicochem Eng Asp 447:59–66

    Article  CAS  Google Scholar 

  • Idris A, Hassan N, Ismail NSM, Misran E, Yusof NM, Ngomsik AF, Bee A (2010) Photo catalytic magnetic separable beads for chromium (VI) reduction. Water Res 44:1683–1688

    Article  CAS  Google Scholar 

  • Janaki V, Shin MN, Kim SH, Lee KJ, Cho M, Ramasamy AK, Oh BT, Kannan SK (2014) Application of poly aniline/bacterial extra cellular polysaccharide nano composite for removal and detoxification of Cr (VI). Cellul 21:463–472

    Article  CAS  Google Scholar 

  • Jang MH, Lim M, Hwang YS (2014) Potential environmental implications of nanoscale zero-valent iron particles for environmental remediation. Environ Health Toxicol 29:e2014022

    Article  Google Scholar 

  • Kadar E, Tarran GA, Jha AN, Al-Subiai SN (2011) Stabilization of engineered zero-valent nanoiron with Na-acrylic copolymer enhances spermiotoxicity. Environ Sci Technol 45(8):3245–3251

    Article  CAS  Google Scholar 

  • Karthik R, Meenakshi S (2015) Removal of Cr (VI) ions by adsorption onto sodium alginate-poly aniline nano fibers. Int J Biol Macromol 72:711–717

    Article  CAS  Google Scholar 

  • Keenan CR, Goth-Goldstein R, Lucas D, Sedlak DL (2009) Oxidative stress induced by zero-valent iron nanoparticles and Fe (II) in human bronchial epithelial cells. Environ Sci Technol 43(12):4555–4560

    Article  CAS  Google Scholar 

  • Keller AA, Garner K, Miller RJ, Lenihan HS (2012) Toxicity of nano-zero valent iron to freshwater and marine organisms. PloS one 7(8):e43983

    Article  CAS  Google Scholar 

  • Kumar D, Kumari J, Pakrashi S, Dalai S, Raichur AM, Sastry TP, Mukherjee A (2014) Qualitative toxicity assessment of silver nanoparticles on the fresh water bacterial isolates and consortium at low level of exposure concentration. Ecotoxicol Environ Saf 108:152–160

    Article  CAS  Google Scholar 

  • Kumari J, Kumar D, Mathur A, Naseer A, Kumar RR, Chandrasekaran PT, Mukherjee A (2014) Cytotoxicity of TiO2 nanoparticles towards freshwater sediment microorganisms at low exposure concentrations. Environ Res 135:333–345

    Article  CAS  Google Scholar 

  • Lalhmunsiama LC, Tiwari D, Lee SM (2014) Immobilized nickel hexacyano ferrate on activated carbons for efficient attenuation of radio toxic Cs(I) from aqueous solutions. Appl Surf Sci 321:275–282

    Article  CAS  Google Scholar 

  • Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927–4933

    Article  CAS  Google Scholar 

  • Li XQ, Cao JS, Zhang WX (2008) Immobilization of hexavalent chromium with iron nanoparticles: characterizations with high resolution x-ray photoelectron spectroscopy (HR-XPS). Ind Eng Chem Res 47:2131–2139

    Article  CAS  Google Scholar 

  • Liu T, Zhao L, Suvn D, Tan X (2010) Entrapment of nano scale zero-valent iron in chitosan beads for hexavalent chromium removal from wastewater. J Hazard Mater 184:724–730

    Article  CAS  Google Scholar 

  • Liu T, Wang ZL, Zhao L, Yang X (2012) Enhanced chitosan/Fe 0-nanoparticles beads for hexavalent chromium removal from wastewater. Chem Eng J 189:196–202

    Article  CAS  Google Scholar 

  • Liu Y, Li S, Chen Z, Megharaj M, Naidu R (2014) Influence of zero-valent iron nanoparticles on nitrate removal by Paracoccus sp. Chemosphere 108:426–432

    Article  CAS  Google Scholar 

  • Loyaux-Lawniczak S, Refait P, Ehrhardt JJ, Lecomte P, Génin JMR (2000) Trapping of Cr by formation of ferrihydrite during the reduction of chromate ions by Fe (II)-Fe (III) hydroxysalt green rusts. Environ Sci Technol 34(3):438–443

    Article  CAS  Google Scholar 

  • Lv X, Jiang G, Xue X, Wu D, Sheng T, Sun C, Xu X (2013) Fe(0)-Fe3O4 nano composites embedded poly vinyl alcohol/sodium alginate beads for chromium (VI) removal. J Hazard Mater 262:748–758

    Article  CAS  Google Scholar 

  • Montesinos VN, Quici N, Halac EB, Leyva AG, Custo G, Bengio S, Zampieri G, Litter MI (2014) Highly efficient removal of Cr (VI) from water with nano particulated zero valent iron: understanding the Fe (III)–Cr (III) passive outer layer structure. Chem Eng J 244:569–575

    Article  CAS  Google Scholar 

  • Mueller NC, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B (2012) Application of nano scale zero valent iron (NZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19:550–558

    Article  CAS  Google Scholar 

  • Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nano level. Sci 311(5761):622–627

    Article  CAS  Google Scholar 

  • O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C (2013) Nanoscale zero valent iron and bimetallic particles for contaminated site remediation. Adv Water Resour 51:104–122

    Article  CAS  Google Scholar 

  • Oladoja NA, Aboluwoye CO, Oladimeji YB (2008) Kinetics and isotherm studies on methylene blue adsorption onto ground palm kernel coat. Turkish J Eng Environ Sci 32:303–312

    CAS  Google Scholar 

  • Ozturk A, Malkoc E (2014) Adsorptive potential of cationic basic yellow 2 (BY2) dye onto natural untreated clay (NUC) from aqueous phase: mass transfer analysis, kinetic and equilibrium profile. Appl Surf Sci 299:105–115

    Article  CAS  Google Scholar 

  • Pakrashi S, Dalai S, Sabat D, Singh S, Chandrasekaran N, Mukherjee A (2011) Cytotoxicity of Al2O3 nanoparticles at low exposure levels to a freshwater bacterial isolate. Chem Res Toxicol 24(11):1899–1904

    Article  CAS  Google Scholar 

  • Pattanayak M, Nayak PL (2013) Green synthesis and characterization of zero valent iron nanoparticles from the leaf extract of Azadirachtaindica (Neem). World J Nanosci Technol 2:06–09

    Google Scholar 

  • Paul ML, Samuel J, Chandrasekaran N, Mukherjee A (2014) Preparation and characterization of layer-by-layer coated nano metal oxides-polymer composite film using Taguchi design method for Cr (VI) removal. J Environ Chem Eng 2:1937–1946

    Article  CAS  Google Scholar 

  • Pescod MB (1992) Wastewater treatment and use in agriculture. http://www.fao.org/docrep/t0551e/t0551e04.htm (Accessed on 13 august 2015)”

  • Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2007) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290

    Article  CAS  Google Scholar 

  • Phenrat T, Long TC, Lowry GV, Veronesi B (2008) Partial oxidation (“aging”) and surface modification decrease the toxicity of nanosized zerovalent iron. Environ Sci Technol 43(1):195–200

    Article  CAS  Google Scholar 

  • Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr (VI) and Pb (II) aqueous solutions using supported, nano scale zero-valent iron. Environ Sci Tech 34:2564–2569

    Article  CAS  Google Scholar 

  • Powell RM, Puls RW, Hightower SK, Sabatini DA (1995) Coupled iron corrosion and chromate reduction: mechanisms for subsurface remediation. Environ Sci Technol 29:1913–1922

    Article  CAS  Google Scholar 

  • Qiu B, Xu C, Sun D, Wei H, Zhang X, Guo J, Wang Q, Rutman D, Guo Z, Wei S (2014) Poly aniline coating on carbon fiber fabrics for improved hexavalent chromium removal. RSC Adv 4(56):29855–29865

    Article  CAS  Google Scholar 

  • Rashmi SH, Madhu GM, Kittur AA, Suresh R, (2013) Synthesis, characterization and application of zero valent iron nanoparticles for the removal of toxic metal hexavalent chromium [Cr (VI)] from aqueous solution. Int J Curr Eng Tech: 37–42

  • Saccà ML, Fajardo C, Martinez-Gomariz M, Costa G, Nande M, Martin M (2014) Molecular stress responses to nano-sized zero-valent iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri. Plos One 9(2):e89677

    Article  CAS  Google Scholar 

  • Samuel J, Pulimi M, Paul ML, Maurya A, Chandrasekaran N, Mukherjee A (2013) Batch and continuous flow studies of adsorptive removal of Cr (VI) by adapted bacterial consortia immobilized in alginate beads. Bioresour Technol 128:423–430

    Article  CAS  Google Scholar 

  • Savasaria M, Emadi M, Bahmanyar MA, Biparva P (2015) Optimization of Cd (II) removal from aqueous solution by ascorbic acid stabilized zero valent iron nanoparticles using response surface methodology. J Ind Eng Chem 21:1403–1409

    Article  CAS  Google Scholar 

  • Shah S, Chandraprabha MN, Samrat K (2014) Synthesis and characterization of zero valent iron nanoparticles and assessment of its antibacterial activity. Int Rev Appl Biotechnol Biochem 2(1):145–151

    Google Scholar 

  • Shi LN, Zhang X, Chen ZL (2011) Removal of chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Res 45(2):886–892

    Article  CAS  Google Scholar 

  • Sikdera MT, Mihara Y, Islam MS, Saito T, Tanaka S, Kurasaki M (2014) Preparation and characterization of chitosan–caboxy methyl-b cyclo dextrin entrapped nano zero-valent iron composite for Cu (II) and Cr (IV) removal from wastewater. Chem Eng J 236:378–387

    Article  CAS  Google Scholar 

  • Singh R, Misra V, Singh RP (2011) Synthesis, characterization and role of zero-valent iron nanoparticle in removal of hexavalent chromium from chromium-spiked soil. J Nanopart Res 13:4063–4073

    Article  CAS  Google Scholar 

  • Tripathy A, Raichur AM, Chandrasekaran N, Prathna TC, Mukherjee A (2010) Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res 12(1):237–246

    Article  CAS  Google Scholar 

  • Tytłak A, Oleszczuk P, Dobrowolski R (2015) Sorption and desorption of Cr (VI) ions from water by biochars in different environmental conditions. Environ Sci Pollut Res 22(8):5985–5994

    Article  CAS  Google Scholar 

  • Uhlig HH, Revie RW (1985) Corrosion and corrosion control; John Wiley: New York.

  • United States Environmental Protection Agency (USEPA, 2012) Basic information about chromium in drinking water. http://water.epa.gov/drink/contaminants/basicinformation/chromium.cfm (Accessed on 11 august 2015)

  • Vieira RS, Meneghetti E, Baroni P, Guibal E, de la Cruz VMG, Caballero A, Castellón ER, Beppu MM (2014) Chromium removal on chitosan-based sorbents—an EXAFS/XANES investigation of mechanism. Mater Chem Phys 146(3):412–417

    Article  CAS  Google Scholar 

  • Von Mersi W, Schinner F (1991) An improved and accurate method for determining the dehydrogenase activity of soils with iodonitrotetrazolium chloride. Biol Fertil Soil 11(3):216–220

    Article  Google Scholar 

  • Wang H, Joseph JA (1999) Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 27(5):612–616

    Article  CAS  Google Scholar 

  • Wang Q, Qian H, Yang Y, Zhang Z, Naman C, Xu X (2010) Reduction of hexavalent chromium by carboxymethyl cellulose-stabilized zero-valent iron nanoparticles. J Contam Hydrol 114(1):35–42

    Article  CAS  Google Scholar 

  • Wu D, Shen Y, Ding A, Mahmood Q, Liu S, Tu Q (2013) Effects of nanoscale zero-valent iron particles on biological nitrogen and phosphorus removal and microorganisms in activated sludge. J Hazard Mater 262:649–655

    Article  CAS  Google Scholar 

  • Yang L, Shi J, Zhou X, Cao S (2015) Hierarchically organization of bio mineralized alginate beads for dual stimuli-responsive drug delivery. Int J Biol Macromol 73:1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge Department of Science and Technology-Science and Engineering Research Board (DST-SERB)[SB/S3/ME/0019/13], Government of India for providing the grant throughout this research work.

Compliance with ethical standards

In this study, neither human participant nor animals were involved.

Conflict of interest

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to P. Mrudula or Amitava Mukherjee.

Additional information

Responsible editor: Philippe Garrigues

K. V. G. Ravikumar and Deepak Kumar contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 1771 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ravikumar, K.V.G., Kumar, D., Rajeshwari, A. et al. A comparative study with biologically and chemically synthesized nZVI: applications in Cr (VI) removal and ecotoxicity assessment using indigenous microorganisms from chromium-contaminated site. Environ Sci Pollut Res 23, 2613–2627 (2016). https://doi.org/10.1007/s11356-015-5382-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5382-x

Keywords

Navigation