Skip to main content
Log in

Microwave-hydrothermal method for the synthesis of composite materials for removal of arsenic from water

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Composite material Zr-doped TiO2, suitable for the removal of arsenic from water, was synthetized with fast and simple microwave-hydrothermal method. Obtained material, Zr-TiO2, had uniform size and composition with zirconium ions incorporated into crystal structure of titanium dioxide. Synthetized composite material had large specific surface area and well-developed micropore and mesopore structure that was responsible for fast adsorption of As(III) and As(V) from water. The influence of pH on the adsorption capacity of arsenic was studied. The kinetics and isotherm experiments were also performed. The treatment of natural water sample containing high concentration of arsenic with composite material Zr-TiO2 was efficient. The concentration of arsenic was reduced to the value recommended by WHO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alp Y, Zuleyha OK-A, Meltem S, Raphael S, Yuda Y (2014) Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water. Chem Eng J 242:321–332

    Article  CAS  Google Scholar 

  • Altikat S, Uysal K, Kuru HI, Kavasoglu M, Ozturk GN, Kucuk A (2015) The effect of arsenic on some antioxidant enzyme activities and lipid peroxidation in various tissues of mirror carp (Cyprinus carpio carpio). Environ Sci Pollut Res 22:3212–3218

    Article  CAS  Google Scholar 

  • Amin MN, Kaneco S, Kitagawa T, Begum A, Katsumata H, Suzuki T, Ohta K (2006) Removal of arsenic in aqueous solutions by adsorption onto waste rice husk. Ind Eng Chem Res 45:8105–8110

    Article  CAS  Google Scholar 

  • Andjelkovic I, Stankovic D, Nesic J, Krstic J, Vulic P, Manojlovic D, Roglic G (2014) Fe-doped TiO2 prepared by microwave-assisted hydrothermal process for removal of As(III) and As(V) from water. Ind Eng Chem Res 53:10841–10848

    Article  CAS  Google Scholar 

  • Babic M, Milonjic K, Polovina J, Kaludjerovic V (1999) Point of zero charge and intrinsic equilibrium constants of activated carbon cloth. Carbon 37:477–481

    Article  CAS  Google Scholar 

  • Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380

    Article  CAS  Google Scholar 

  • Biswaranjan M, Ghosh UC (2007) Adsorption of arsenic from aqueous solution on synthetic hydrous stannic oxide. J Hazard Mater 144:522–531

    Article  CAS  Google Scholar 

  • Biswas BK, Inoue J, Inoue K, Ghimire KN, Harada H, Ohto K, Kawakita H (2008) Adsorptive removal of As(V) and As(III) from water by a Zr(IV)-loaded orange waste gel. J Hazard Mater 154:1066–1074

    Article  CAS  Google Scholar 

  • Book of Regulations on the Hygienic Correctness of Drinking Water, 1998. Official Gazette SRJ 42/98, Belgrade. (In Serbian)

  • Bortun A, Bortun M, Pardini J, Khainakov AS, Garcia RJ (2010) Synthesis and characterization of a mesoporous hydrous zirconium oxide used for arsenic removal from drinking water. Mater Res Bull 45:142–148

    Article  CAS  Google Scholar 

  • Bugueno MP, Acevedo ES, Bonilla AC, Pizarro EG, Pasten AP (2014) Differential arsenic binding in the sediments of two sites in Chile's lower Loa River basin. Sci Total Environ 466–467:387–396

    Article  CAS  Google Scholar 

  • Deng S, Li Z, Huang J, Yu G (2010) Preparation, characterization and application of a Ce-Ti oxide adsorbent for enhanced removal of arsenate from water. J Hazard Mater 179:1014–1021

    Article  CAS  Google Scholar 

  • Dhoble RM, Lunge S, Bhole AG, Rayalu S (2011) Magnetic binary oxide particles (MBOP): a promising adsorbent for removal of As(III) in water. Water Res 45:4769–4781

    Article  CAS  Google Scholar 

  • Dubinin MM (1975) Progress in surface and membrane science, vol 9. Academic Press, NY

    Google Scholar 

  • Freundlich HMF (1905) Über die adsorption in lösungen. Z Phys Chem 57:385–470

    Google Scholar 

  • Genc-Fuhrman H, Tjell JC, McConchie D (2004) Increasing the arsenate adsorption capacity of neutralized red mud. J Colloid Interface Sci 271:313–320

    Article  CAS  Google Scholar 

  • Gregg SJ, Sing KSW (1982) Adsorption, surface area and porosity. Academic Press, London

    Google Scholar 

  • Gupta K, Ghosh UC (2009) Arsenic removal using hydrous nanostructure iron(III)-titanium(IV) binary mixed oxide from aqueous solution. J Hazard Mater 161:884–892

    Article  CAS  Google Scholar 

  • Gupta K, Biswas K, Ghosh UC (2008) Nanostructure iron(III)-zirconium(IV) binary mixed oxide: synthesis, characterization, and psysicochemical aspects of As(III) sorption from the aqueous solution. Ind Eng Chem Res 47:9903–9912

    Article  CAS  Google Scholar 

  • Gupta K, Basu T, Ghosh UC (2009) Sorption characteristics of aresenic(V) for removal from water using agglomerated nanostructure iron(III)-zirconium(IV) bimetal mixed oxide. J Chem Eng Data 54:2222–2228

    Article  CAS  Google Scholar 

  • Hao-Jie C, Jie-Kui C, Huan Z, Baoling Y, Cui-Ling A, Ming-Lai F (2014) Fabrication of magnetic porous Fe–Mn binary oxide nanowires with superior capability for removal of As(III) from water. J Hazard Mater 279:26–31

    Article  CAS  Google Scholar 

  • He J, Charlet L (2013) A review of arsenic presence in China drinking water. J Hydrol 492:79–88

    Article  CAS  Google Scholar 

  • Ho YS (2004) Citation review of Lagergren kinetic rate equation on adsorption reactions. Scientometrics 59:171–177

    Article  CAS  Google Scholar 

  • Ho YS, Ng JCY, McKay G (2000) Kinetics of pollutant sorption by biosorbents: review. Separ Purif Methods 29:189–232

    Article  CAS  Google Scholar 

  • Kondo H, Ishiguro Y, Ohno K, Nagase M, Toba M, Takagi M (1999) Naturally occurring arsenic in the groundwaters in the southern region of Fukuoka Prefecture, Japan. Water Res 33:1967–1972

    Article  CAS  Google Scholar 

  • Langmuir I (1916) The constitution and fundamental properties of solids and liquids. J Am Chem Soc 38:2221–2295

    Article  CAS  Google Scholar 

  • Li Z, Deng S, Yu G, Huang J, Chao Lim V (2010) As(V) and As(III) removal from water by a Ce-Ti oxide adsorbent: behavior and mechanism. Chem Eng J 161:106–113

    Article  CAS  Google Scholar 

  • Lomenech C, Simoni E, Drot R, Ehrhardt JJ, Mielczarski J (2003) Sorption of uranium(VI) species on zircon: structural investigation of the solid/solution interface. J Colloid Interface Sci 261:221–232

    Article  CAS  Google Scholar 

  • Minovic T, Gulicovski J, Stoiljkovic M, Jokic B, Zivkovic L, Matovic B, Babic B (2015) Surface characterization of mesoporous carbon cryogel and its application in arsenic (III) adsorption from aqueous solutions. Microporous Mesoporous Mater 201:271–276

    Article  CAS  Google Scholar 

  • National Research Council (2001) Arsenic in drinking water. 2001 update. National Academy Press, Washington

    Google Scholar 

  • Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X (2005) Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res 11:2327–2337

    Article  CAS  Google Scholar 

  • Pereira PAL, Dutra AJB, Martins AH (2007) Adsorptive removal of arsenic from river waters using pisolite. Miner Eng 20:52–59

    Article  CAS  Google Scholar 

  • Reddy DHK, Lee S-M, Yang J-K, Park Y-J (2014) Characterization of binary oxide photoactive material and its application for inorganic arsenic removal. J Ind Eng Chem 20:3658–3662

    Article  CAS  Google Scholar 

  • Rodríguez-Carvajal J (2006) FullProf Suite: crystallographic tools for Rietveld, profile matching & integrated intensity refinements of X-ray and/or neutron data. http://www.ill.eu/sites/fullprof/

  • Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids, principles, methodology and applications. Academic Press, London

    Google Scholar 

  • Rowland ALH, Omoregie OE, Millot R, Jimenez C, Mertens J, Baciu C, Hug JS, Berg M (2011) Geochemistry and arsenic behavior in groundwater resources of the Pannonian Basin (Hungary and Romania). Appl Geochem 26:1–17

    Article  CAS  Google Scholar 

  • Sen Gupta S, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Colloid Interf Sci 162:39–58

    Article  CAS  Google Scholar 

  • Shan C, Tong M (2013) Efficient removal of trace arsenite through oxidation and adsorption by magnetic nanoparticles modified with Fe-Mn binary oxide. Water Res 47:3411–3421

    Article  CAS  Google Scholar 

  • Simeonidis K, Gkinis T, Tresintsi S, Martinez-Boubeta C, Vourlias G, Tsiaoussis I, Stavropoulos G, Mitrakas M, Angelakeris M (2011) Magnetic separation of hematite-coated Fe3O4 particles used as arsenic adsorbent. Chem Eng J 168:1008–1015

    Article  CAS  Google Scholar 

  • Singh TS, Pant KK (2004) Equilibrium, kinetics and thermodynamic studies for adsorption of As(III) on activated alumina. Sep Purif Technol 36:139–147

    Article  CAS  Google Scholar 

  • Sorg JT, Chen SCA, Wang L (2014) Arsenic species in drinking water wells in the USA with high arsenic concentrations. Water Res 48:156–169

    Article  CAS  Google Scholar 

  • Suzuki TM, Bomani JO, Matsunaga J, Yokoyama T (2000) Preparation of porous resin loaded with crystalline hydrous zirconium oxide and its application to the removal of arsenic. React Funct Polym 43:165–172

    Article  CAS  Google Scholar 

  • Wen Z, Zhang Y, Dai C, Chen B, Guo S, Yu H, Wu D (2014) Synthesis of ordered mesoporous iron manganese bimetal oxides for arsenic removal from aqueous solutions. Microporous Mesoporous Mater 200:235–244

    Article  CAS  Google Scholar 

  • Xu W, Wang J, Wang L, Sheng G, Liu J, Yu H, Huang XJ (2013) Enhanced arsenic removal from water by hierarchically porous CeO2–ZrO2 nanospheres: role of surface- and structure-dependent properties. J Hazard Mater 15:498–507

    Article  CAS  Google Scholar 

  • Yang J-S, Kim Y-S, Park S-M, Beak K (2014) Removal of As(III) and As(V) using iron-rich sludge produced from coal mine drainage treatment plant. Environ Sci Pollut Res 21:10878–10889

    Article  CAS  Google Scholar 

  • Yasemin C, Kamuran G, Seval A (2015) Effect of deposition parameters on the structural properties of ZnO nanopowders prepared by microwave-assisted hydrothermal synthesis. Spectrochim Acta A Mol Biomol Spectrosc 138:617–622

    Article  CAS  Google Scholar 

  • Zhang FS, Itoh H (2005) Iron oxide-loaded slag for arsenic removal from aqueous system. Chemosphere 60:319–325

    Article  CAS  Google Scholar 

  • Zhang G, Qu J, Liu H, Liu R, Wu R (2007) Preparation and evaluation of a novel Fe-Mn binary oxide adsorbent for effective arsenite removal. Water Res 41:1921–1928

    Article  CAS  Google Scholar 

  • Zhang K, Dwivedi V, Chi C, Wu J (2010) Graphene oxide/ferric hydroxide composites for efficient arsenate removal from drinking water. J Hazard Mater 182:162–168

    Article  CAS  Google Scholar 

  • Zhang G, Ren Z, Zhang X, Chen J (2013) Nanostructured iron(III)-copper(II) binary oxide: a novel adsorbent for enhanced arsenic removal from aqueous solutions. Water Res 47:4022–4031

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Ministry of Education and Science, Republic of Serbia (Project No. 172030).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ivan Andjelkovic or Goran Roglic.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andjelkovic, I., Jovic, B., Jovic, M. et al. Microwave-hydrothermal method for the synthesis of composite materials for removal of arsenic from water. Environ Sci Pollut Res 23, 469–476 (2016). https://doi.org/10.1007/s11356-015-5283-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5283-z

Keywords

Navigation