Skip to main content
Log in

The spatial distribution of fossil fuel CO2 traced by Δ14C in the leaves of gingko (Ginkgo biloba L.) in Beijing City, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Atmospheric fossil fuel CO2 (CO2ff ) information is an important reference for local government to formulate energy-saving and emission reduction in China. The CO2ff spatial distribution in Beijing City was traced by Δ14C in the leaves of gingko (Ginkgo biloba L.) from late March to September in 2009. The Δ14C values were in the range of −35.2 ± 2.8∼15.5 ± 3.2 ‰ (average 3.4 ± 11.8 ‰), with high values found at suburban sites (average 12.8 ± 3.1 ‰) and low values at road sites (average −8.4 ± 18.1 ‰). The CO2ff concentrations varied from 11.6 ± 3.7 to 32.5 ± 9.0 ppm, with an average of 16.4 ± 4.9 ppm. The CO2ff distribution in Beijing City showed spatial heterogeneity. CO2ff hotspots were found at road sites resulted from the emission from vehicles, while low CO2ff concentrations were found at suburban sites because of the less usage of fossil fuels. Additionally, CO2ff concentrations in the northwest area were generally higher than those in the southeast area due to the disadvantageous topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beijing Transportation Research Center (BTRC), 2010. Beijing Transport Annual Report 2010. Beijing, China, p60

  • Currie KI, Brailsford G, Nichol S, Gomez A, Sparks R, Lassey KR, Riedel K (2011) Tropospheric 14CO2 at Wellington, New Zealand: the world’s longest record. Biogeochemistry 104:5–22

    Article  CAS  Google Scholar 

  • Djuricin S, Xu X, Pataki DE (2012) The radiocarbon composition of tree rings as a tracer of local fossil fuel emissions in the Los Angeles basin: 1980–2008. J Geophys Res 117:D12302

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R (2007) Changes in Atmospheric Constituents and in Radiative Forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Solomon S, Qin D, Manning M, Chen Z, Marquis M (eds) Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Glerum C (1980) Food sinks and food reserves of trees in temperate climates. N Z J For Sci 10(1):176–185

    Google Scholar 

  • Gordon JC, Larson PR (1968) Seasonal course of photosynthesis, respiration, and distribution of 14C in young Pinus resinosa trees as related to wood formation. Plant Physiol 43:1617–1624

    Article  CAS  Google Scholar 

  • Graven HD, Stephens BB, Guilderson TP, Campos TL, Schimel DS, Campbell JE (2009) Vertical profiles of biospheric and fossil fuel-derived CO2 and fossil fuel CO2: CO ratios from airborne measurements of ∆14C, CO2 and CO above Colorado, USA. Tellus B 61:536–546

    Article  Google Scholar 

  • Hakamata K (1983) Translocation and distribution of 14C-photosynthates assimilated in different seasons by young tea plants. Japan Agric Res Quarterly 16(4):258–263

    CAS  Google Scholar 

  • Hansen P (1967) 14C-Studies on apple trees. III. The influence of season on storage and mobilization of labelled compounds. Physiol Plantarum 20:1103–1111

    Article  CAS  Google Scholar 

  • Hansen P (1971) 14C-studies on apple trees. VII. The early seasonal growth in leaves, flowers and shoots as dependent upon current photosynthates and existing reserves. Physiol Plantarum 25(3):469–473

    Article  CAS  Google Scholar 

  • Hansen J, Beck E (1990) The fate and path of assimilation products in the stem of 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees 4:16–21

    Article  Google Scholar 

  • Hansen J, Vogg G, Beck E (1996) Assimilation, allocation and utilization of carbon by 3-year-old Scots pine (Pinus sylvestris L.) trees during winter and early spring. Trees 11(2):83–90

    Google Scholar 

  • Hsueh DY, Krakauer NY, Randerson JT, Xu X, Trumbore SE, Southon JR (2007) Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophys Res Lett 34:L02816

    Article  Google Scholar 

  • Hua Q, Barbetti M, Worbes M, Head J, Levchenko VA (1999) Review of radiocarbon data from atmospheric and tree ring samples for the period 1945–1997 AD. IAWA J 20:261–283

    Article  Google Scholar 

  • Hua Q, Barbetti M, Rakowski AZ (2013) Atmospheric radiocarbon for the period 1950–2010. Radiocarbon 55(4):2059–2072

    Article  CAS  Google Scholar 

  • IPCC (2007) Climate Change 2007: the Physical Science Basis. Summary for Policymakers. Contribution of working group I to the fourth assessment report. Geneva, Switzerland

  • Jull AJT (2007) Radiocarbon dating: AMS method. In: Scott AE (ed) Encyclopedia of Quaternary Science. Elsevier, Amsterdam, pp 2911–2918

    Chapter  Google Scholar 

  • Kozlowski TT, Keller T (1966) Food relations of woody plants. Bot Rev 32(4):293–382

    Article  CAS  Google Scholar 

  • Kuc T, Rozanski K, Zimnoch M, Necki J, Chmura L, Jelen D (2007) Two decades of regular observations of 14CO2 and 13CO2 content in atmospheric carbon dioxide in central Europe: Long-term changes of regional anthropogenic fossil CO2 emissions. Radiocarbon 49:807–816

    CAS  Google Scholar 

  • Levin I, Kromer B, Schoch-Fischer H, Bruns M, Munnich M, Berdau D, Vogel JC, Munnich KO (1994) Δ14CO2 records from two sites in Central Europe. In: Boden TA, Kaiser DP, Sepanski RJ, Stoss FW (eds) Trends 93 –A compendium of data on global change: 203–222 and online updates (OnIine Trends). Carbon Dioxide Information Analysis Centre. Oak Ridge National Laboratory, Oak Ridge, TN. ORNL/CDIAC–65

    Google Scholar 

  • Levin I, Kromer B (2004) The tropospheric 14CO2 level in mid-latitudes of the Northern Hemisphere (1959–2003). Radiocarbon 46:1261–1272

    CAS  Google Scholar 

  • Levin I, Karstens UTE (2007) Inferring high-resolution fossil fuel CO2 records at continental sites from combined 14CO2 and CO observations. Tellus B 59:245–250

    Article  Google Scholar 

  • Levin I, Naegler T, Kromer B, Diehl M, Francey RJ, Gomez-Pelaez AJ, Steele LP, Wagenbach D, Weller R, Worthy D (2010) Observations and modelling of the global distribution and long-term trend of atmospheric 14CO2. Tellus B 62:26–46

    Article  Google Scholar 

  • Levin I, Kromer B, Hammer S (2013) Atmospheric Δ14CO2 trend in Western European background air from 2000 to 2012. Tellus B 65:20092

    Article  Google Scholar 

  • Lichtfouse E, Lichtfouse M, Kashgarian M, Bol R (2005) 14C of grasses as an indicator of fossil fuel CO2 pollution. Environ Chem Lett 3:78–81

    Article  CAS  Google Scholar 

  • Lippu J (1998) Redistribution of 14C-labelled reserve carbon in Pinus sylvestris seedlings during shoot elongation. Silva Fenn 32(1):3–10

    Article  Google Scholar 

  • McNeely R (1994) Long-term environmental monitoring of 14C levels in the Ottawa region. Environ Int 20(5):675–679

    Article  CAS  Google Scholar 

  • Miller JB, Lehman SJ, Montzka SA, Sweeney C, Miller BR, Karion A, Wolak C, Dlugokencky EJ, Southon J, Turnbull JC, Tans PP (2012) Linking emissions of fossil fuel CO2 and other anthropogenic trace gases using atmospheric 14CO2. J Geophys Res 117:D08302

    Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA) (2009) Earth System Research Laboratory, Global Monitoring Division. http://www.esrl.noaa.gov/gmd/dv/data/index.php?site=wlg

  • Rakowski AZ, Pawelczyk S, Pazdur A (2001) Changes of 14C concentration in modern trees from upper Silesia region, Poland. Radiocarbon 43:679–689

    CAS  Google Scholar 

  • Rakowski A, Nakamura T, Pazdur A (2004) Changes in radiocarbon concentration in modern wood from Nagoya, central Japan. Nucl Instrum Meth B 223–224:507–510

    Article  Google Scholar 

  • Rakowski AZ, Nakamura T, Pazdur A (2008) Variations of anthropogenic CO2 in urban area deduced by radiocarbon concentration in modern tree rings. J Environ Radioactiv 99:1558–1565

    Article  CAS  Google Scholar 

  • Riley WJ, Hsueh DY, Randerson JT, Fischer ML, Hatch JG, Pataki DE, Wang W, Goulden ML (2008) Where do fossil fuel carbon dioxide emissions from California go? An analysis based on radiocarbon observations and an atmospheric transport model. J Geophys Res 113:G04002

    Google Scholar 

  • Schier GA (1970) Seasonal pathways of 14C-photosynthate in Red Pine labeled in May, July and October. J Forest Science 16(1):2–13

    CAS  Google Scholar 

  • Slota P, Jull AT, Linick T, Toolin L (1987) Preparation of small samples for 14C accelerator targets by catalytic reduction of CO. Radiocarbon 29:303–306

    CAS  Google Scholar 

  • Stuiver M, Polach HA (1977) Discussion: reporting of 14C data. Radiocarbon 19:355–363

    Google Scholar 

  • Turnbull JC, Miller JB, Lehman SJ, Tans PP, Sparks RJ, Southon J (2006) Comparison of 14CO2, CO, and SF6 as tracers for recently added fossil fuel CO2 in the atmosphere and implications for biological CO2 exchange. Geophys Res Lett 33:L01817

    Article  Google Scholar 

  • Turnbull JC, Lehman SJ, Miller JB, Sparks RJ, Southon JR, Tans PP (2007) A new high precision 14CO2 time series for North American continental air. J Geophys Res 112:D11310

    Article  Google Scholar 

  • Turnbull J, Rayner P, Miller J, Naegler T, Ciais P, Cozic A (2009) On the use of 14CO2 as a tracer for fossil fuel CO2: quantifying uncertainties using an atmospheric transport model. J Geophys Res 114:D22302

    Article  Google Scholar 

  • Ursino DJ, Paul J (1973) The long-term fate and distribution of 14C photoassimilated by young white pines in late summer. Can J Bot 51(3):683–687

    Article  CAS  Google Scholar 

  • Vay SA, Tyler SC, Choi Y, Blake DR, Blake NJ, Sachse GW, Diskin GS, Singh HB (2009) Sources and transport of Δ14C in CO2 within the Mexico City Basin and vicinity. Atmos Chem Phys 9:4973–4985

    Article  CAS  Google Scholar 

  • Weather Underground (2009) Website (http://www.wunderground.com/history/airport/ZBAA/2009/4/1/CustomHistory.html?dayend=1&monthend=10&yearend=2009&req_city=&req_state=&req_statename=&reqdb.zip=&reqdb.magic=&reqdb.wmo=)

  • Xi X, Ding X, Fu D, Zhou L, Liu K (2011) Regional Δ14C patterns and fossil fuel derived CO2 distribution in the Beijing area using annual plants. Chinese Sci Bull 56:1721–1726

    Article  CAS  Google Scholar 

  • Yang YS, Hori Y (1979) Studies on retranslocation of accumulated assimilates in 'Delaware' grapevines I. Retranslocation of 14C-assimilates in the following spring after 14C feeding in summer and autumn. Tohoku J Agric Res 30(2):43–56

    CAS  Google Scholar 

  • Zhou W, Wu S, Huo W, Xiong X, Cheng P, Lu X, Niu Z (2014) Tracing fossil fuel CO2 using Δ14C in Xi’an City, China. Atmos Environ 94:538–545

    Article  CAS  Google Scholar 

  • Zondervan A, Meijer HAJ (1996) Isotopic characterisation of CO2 sources during regional pollution events using isotopic and radiocarbon analysis. Tellus B 48:601–612

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No 41303072, 41573136), Young scholar project of Institute of Earth Environment, Chinese Academy of Sciences (Y354011480), the Natural Science Foundation of Shaanxi Province, China (2014JQ2-4018), and the Natural Science Foundation of Fujian Province, China (2013J05063). The anonymous reviewers are acknowledged for their valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenchuan Niu.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Z., Zhou, W., Zhang, X. et al. The spatial distribution of fossil fuel CO2 traced by Δ14C in the leaves of gingko (Ginkgo biloba L.) in Beijing City, China. Environ Sci Pollut Res 23, 556–562 (2016). https://doi.org/10.1007/s11356-015-5211-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-5211-2

Keywords

Navigation