Skip to main content
Log in

Mechanistic insights into the specificity of human cytosolic sulfotransferase 2A1 (hSULT2A1) for hydroxylated polychlorinated biphenyls through the use of fluoro-tagged probes

  • PCBs: Exposures, Effects, Remediation and Regulation with special reference to PCBs in Schools
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Determining the relationships between the structures of substrates and inhibitors and their interactions with drug-metabolizing enzymes is of prime importance in predicting the toxic potential of new and legacy xenobiotics. Traditionally, quantitative structure activity relationship (QSAR) studies are performed with many distinct compounds. Based on the chemical properties of the tested compounds, complex relationships can be established so that models can be developed to predict toxicity of novel compounds. In this study, the use of fluorinated analogues as supplemental QSAR compounds was investigated. Substituting fluorine induces changes in electronic and steric properties of the substrate without substantially changing the chemical backbone of the substrate. In vitro assays were performed using purified human cytosolic sulfotransferase hSULT2A1 as a model enzyme. A mono-hydroxylated polychlorinated biphenyl (4-OH PCB 14) and its four possible mono-fluoro analogues were used as test compounds. Remarkable similarities were found between this approach and previously published QSAR studies for hSULT2A1. Both studies implicate the importance of dipole moment and dihedral angle as being important to PCB structure in respect to being substrates for hSULT2A1. We conclude that mono-fluorinated analogues of a target substrate can be a useful tool to study the structure activity relationships for enzyme specificity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bensadoun A, Weinstein D (1976) Assay of proteins in the presence of interfering materials. Anal Biochem 70:241–250

    Article  CAS  Google Scholar 

  • Bergman A, Klasson-Wehler E, Kuroki H (1994) Selective retention of hydroxylated PCB metabolites in blood. Environ Health Perspect 102:464–469

    Article  CAS  Google Scholar 

  • Brouwer A, Longnecker MP, Birnbaum LS, Cogliano J, Kostyniak P, Moore J, Schantz S, Winneke G (1999) Characterization of potential endocrine-related health effects at low-dose levels of exposure to PCBs. Environ Health Perspect 107(Suppl 4):639–649

    Article  CAS  Google Scholar 

  • Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032

    Article  Google Scholar 

  • Cossi M, Barone V, Cammi R, Tomasi J (1996) Ab initio study of solvated molecules: a new implementation of the polarizable continuum model. Chem Phys Lett 255:327–335

    Article  CAS  Google Scholar 

  • Currado GM, Harrad S (1998) Comparison of polychlorinated biphenyl concentrations in indoor and outdoor air and the potential significance of inhalation as a human exposure pathway. Environ Sci Technol 32:3043–3047

    Article  CAS  Google Scholar 

  • Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) The development and use of quantum-mechanical molecular-models. 76. Am1 - a new general-purpose quantum-mechanical molecular-model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  • Duffel MW (2010) Sulfotransferases. Comprehensive toxicology, 4. Elsevier, Oxford

    Google Scholar 

  • Ekuase EJ, Liu Y, Lehmler HJ, Robertson LW, Duffel MW (2011) Structure-activity relationships for hydroxylated polychlorinated biphenyls as inhibitors of the sulfation of dehydroepiandrosterone catalyzed by human hydroxysteroid sulfotransferase SULT2A1. Chem Res Toxicol 24:1720–1728

    Article  CAS  Google Scholar 

  • Ekuase EJ, Lehmler HJ, Robertson LW, Duffel MW (2014) Binding interactions of hydroxylated polychlorinated biphenyls (OHPCBs) with human hydroxysteroid sulfotransferase hSULT2A1. Chem Biol Interact 212:56–64

    Article  CAS  Google Scholar 

  • Erickson MD, Kaley RG 2nd (2011) Applications of polychlorinated biphenyls. Environ Sci Pollut Res Int 18:135–151

    Article  CAS  Google Scholar 

  • Gamage N, Barnett A, Hempel N, Duggleby RG, Windmill KF, Martin JL, McManus ME (2006) Human sulfotransferases and their role in chemical metabolism. Toxicol Sci 90:5–22

    Article  CAS  Google Scholar 

  • Grimm FA, Lehmler HJ, He X, Robertson LW, Duffel MW (2013) Sulfated metabolites of polychlorinated biphenyls are high-affinity ligands for the thyroid hormone transport protein transthyretin. Environ Health Perspect 121:657–662

    Article  Google Scholar 

  • Grimm FA, Hu D, Kania-Korwel I, Lehmler HJ, Ludewig G, Hornbuckle KC, Duffel MW, Bergman A, Robertson LW (2015) Metabolism and metabolites of polychlorinated biphenyls. Crit Rev Toxicol 45:245–272

    Article  CAS  Google Scholar 

  • Gulcan HO, Duffel MW (2011) Substrate inhibition in human hydroxysteroid sulfotransferase SULT2A1: studies on the formation of catalytically non-productive enzyme complexes. Arch Biochem Biophys 507:232–240

    Article  CAS  Google Scholar 

  • Gulcan HO, Liu Y, Duffel MW (2008) Pentachlorophenol and other chlorinated phenols are substrates for human hydroxysteroid sulfotransferase hSULT2A1. Chem Res Toxicol 21:1503–1508

    Article  CAS  Google Scholar 

  • Hansen LG (1998) Stepping backward to improve assessment of PCB congener toxicities. Environ Health Perspect 106(Suppl 1):171–189

    Article  CAS  Google Scholar 

  • Hawkins GD, Cramer CJ, Truhlar DG (1998) Universal quantum mechanical model for solvation free energies based on gas-phase geometries. J Phys Chem B 102:3257–3271

    Article  CAS  Google Scholar 

  • Herrick RF, McClean MD, Meeker JD, Baxter LK, Weymouth GA (2004) An unrecognized source of PCB contamination in schools and other buildings. Environ Health Perspect 112:1051–1053

    Article  CAS  Google Scholar 

  • Hu D, Hornbuckle KC (2010) Inadvertent polychlorinated biphenyls in commercial paint pigments. Environ Sci Technol 44:2822–2827

    Article  CAS  Google Scholar 

  • James MO (2001) Polychlorinated biphenyls: metabolism and metabolites. PCBs: recent advances in environmental toxicology and health effects. The University Press of Kentucky, Lexington

    Google Scholar 

  • James MO, Ambadapadi S (2013) Interactions of cytosolic sulfotransferases with xenobiotics. Drug Metab Rev 45:401–414

    Article  CAS  Google Scholar 

  • Kester MH, Bulduk S, Tibboel D, Meinl W, Glatt H, Falany CN, Coughtrie MW, Bergman A, Safe SH, Kuiper GG, Schuur AG, Brouwer A, Visser TJ (2000) Potent inhibition of estrogen sulfotransferase by hydroxylated PCB metabolites: a novel pathway explaining the estrogenic activity of PCBs. Endocrinology 141:1897–1900

    Article  CAS  Google Scholar 

  • Kim JS, Klosener J, Flor S, Peters TM, Ludewig G, Thorne PS, Robertson LW, Luthe G (2014) Toxicity assessment of air-delivered particle-bound polybrominated diphenyl ethers. Toxicology 317:31–39

    Article  CAS  Google Scholar 

  • Klösener J, Swenson DC, Robertson LW, Luthe G (2008) Effects of fluoro substitution on 4-bromodiphenyl ether (PBDE 3). Acta Crystallogr B 64:108–119

    Article  CAS  Google Scholar 

  • Klösener J, Peters TM, Adamcakova-Dodd A, Teesch LM, Thorne PS, Robertson LW, Luthe G (2009) Innovative application of fluoro tagging to trace airborne particulate and gas-phase polybrominated diphenyl ether exposures. Chem Res Toxicol 22:179–186

    Article  CAS  Google Scholar 

  • Lauby-Secretan B, Loomis D, Grosse Y, El Ghissassi F, Bouvard V, Benbrahim-Tallaa L, Guha N, Baan R, Mattock H, Straif K, International Agency for Research on Cancer Monograph Working Group Iarc LF (2013) Carcinogenicity of polychlorinated biphenyls and polybrominated biphenyls. Lancet Oncol 14:287–288

    Article  CAS  Google Scholar 

  • Liu Y, Apak TI, Lehmler HJ, Robertson LW, Duffel MW (2006) Hydroxylated polychlorinated biphenyls are substrates and inhibitors of human hydroxysteroid sulfotransferase SULT2A1. Chem Res Toxicol 19:1420–1425

    Article  CAS  Google Scholar 

  • Liu Y, Smart JT, Song Y, Lehmler HJ, Robertson LW, Duffel MW (2009) Structure-activity relationships for hydroxylated polychlorinated biphenyls as substrates and inhibitors of rat sulfotransferases and modification of these relationships by changes in thiol status. Drug Metab Dispos 37:1065–1072

    Article  CAS  Google Scholar 

  • Ludewig G, Robertson LW (2013) Polychlorinated biphenyls (PCBs) as initiating agents in hepatocellular carcinoma. Cancer Lett 334:46–55

    Article  CAS  Google Scholar 

  • Luthe G, Brinkman UA (2000) Monofluorinated polycyclic aromatic hydrocarbons: characteristics and intended use in environmental analysis. Analyst 125:1699–1702

    Article  CAS  Google Scholar 

  • Luthe G, Ariese F, Brinkman UAT (2002a) Monofluorinated polycyclic aromatic hydrocarbons: standards in environmental chemistry and biochemical applications. In: Neilson AH (ed) Handbook of environmental chemistry: organic fluorine compounds. Springer Verlag, Berlin

    Google Scholar 

  • Luthe G, Stroomberg GJ, Ariese F, Brinkman UA, van Straalen NM (2002b) Metabolism of 1-fluoropyrene and pyrene in marine flatfish and terrestrial isopods. Environ Toxicol Pharmacol 12:221–229

    Article  CAS  Google Scholar 

  • Luthe G, Leonards PE, Reijerink GS, Liu H, Johansen JE, Robertson LW (2006) Monofluorinated analogues of polybrominated diphenyl ethers as analytical standards: synthesis, NMR, and GC-MS characterization and molecular orbital studies. Environ Sci Technol 40:3023–3029

    Article  CAS  Google Scholar 

  • Luthe G, Swenson DC, Robertson LW (2007) Influence of fluoro-substitution on the planarity of 4-chlorobiphenyl (PCB 3). Acta Crystallogr B 63:319–327

    Article  CAS  Google Scholar 

  • Luthe G, Garcia Boy R, Jacobus J, Smith BJ, Rahaman A, Robertson LW, Ludewig G (2008a) Xenobiotic geometry and media pH determine cytotoxicity through solubility. Chem Res Toxicol 21:1017–1027

    Article  CAS  Google Scholar 

  • Luthe G, Jacobus JA, Robertson LW (2008b) Receptor interactions by polybrominated diphenyl ethers versus polychlorinated biphenyls: a theoretical structure-activity assessment. Environ Toxicol Pharmacol 25:202–210

    Article  CAS  Google Scholar 

  • Luthe GM, Schut BG, Aaseng JE (2009) Monofluorinated analogues of polychlorinated biphenyls (F-PCBs): synthesis using the Suzuki-coupling, characterization, specific properties and intended use. Chemosphere 77:1242–1248

    Article  CAS  Google Scholar 

  • Marek RF, Martinez A, Hornbuckle KC (2013) Discovery of hydroxylated polychlorinated biphenyls (OH-PCBs) in sediment from a lake Michigan waterway and original commercial aroclors. Environ Sci Technol 47:8204–8210

    Article  CAS  Google Scholar 

  • Matthews HB, Kato S (1979) The metabolism and disposition of halogenated aromatics. Ann N Y Acad Sci 320:131–137

    Article  CAS  Google Scholar 

  • Pacifici GM, Coughtrie MW (2005) Human cytosolic sulfotransferases. CRC Press, Boca Raton

    Google Scholar 

  • Persoon C, Peters TM, Kumar N, Hornbuckle KC (2010) Spatial distribution of airborne polychlorinated biphenyls in Cleveland, Ohio and Chicago, Illinois. Environ Sci Technol 44:2797–2802

    Article  CAS  Google Scholar 

  • Pery AR, Desmots S, Mombelli E (2010) Substance-tailored testing strategies in toxicology: an in silico methodology based on QSAR modeling of toxicological thresholds and Monte Carlo simulations of toxicological testing. Regul Toxicol Pharmacol 56:82–92

    Article  CAS  Google Scholar 

  • Quinete N, Schettgen T, Bertram J, Kraus T (2014) Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: a review. Environ Sci Pollut Res Int 21:11951–11972

    Article  CAS  Google Scholar 

  • Sandau CD, Ayotte P, Dewailly E, Duffe J, Norstrom RJ (2000) Analysis of hydroxylated metabolites of PCBs (OH-PCBs) and other chlorinated phenolic compounds in whole blood from Canadian inuit. Environ Health Perspect 108:611–616

    Article  CAS  Google Scholar 

  • Schantz SL (1996) Developmental neurotoxicity of PCBs in humans: what do we know and where do we go from here? Neurotoxicol Teratol 18:217–227, discussion 229-76

    Article  CAS  Google Scholar 

  • Seegal RF (1996) Epidemiological and laboratory evidence of PCB-induced neurotoxicity. Crit Rev Toxicol 26:709–737

    Article  CAS  Google Scholar 

  • Sekura RD (1981) Adenosine 3′-phosphate 5′-phosphosulfate. Methods Enzymol 77:413–415

    Article  CAS  Google Scholar 

  • Sekura RD, Jakoby WB (1979) Phenol sulfotransferases. J Biol Chem 254:5658–5663

    CAS  Google Scholar 

  • Shao Y et al (2006) Advances in methods and algorithms in a modern quantum chemistry program package. Phys Chem Chem Phys 8:3172–3191

    Article  CAS  Google Scholar 

  • Sheng JJ, Duffel MW (2003) Enantioselectivity of human hydroxysteroid sulfotransferase ST2A3 with naphthyl-1-ethanols. Drug Metab Dispos 31:697–700

    Article  CAS  Google Scholar 

  • Sheng JJ, Sharma V, Duffel MW (2001) Measurement of aryl and alcohol sulfotransferase activity. Curr Protoc Toxicol Chapter 4, Unit4 5

  • Soffers AE, Boersma MG, Vaes WH, Vervoort J, Tyrakowska B, Hermens JL, Rietjens IM (2001) Computer-modeling-based QSARs for analyzing experimental data on biotransformation and toxicity. Toxicol In Vitro 15:539–551

    Article  CAS  Google Scholar 

  • Ueno D, Darling C, Alaee M, Campbell L, Pacepavicius G, Teixeira C, Muir D (2007) Detection of hydroxylated polychlorinated biphenyls (OH-PCBs) in the abiotic environment: surface water and precipitation from Ontario, Canada. Environ Sci Technol 41:1841–1848

    Article  CAS  Google Scholar 

  • van ‘t Erve TJ, Rautiainen RH, Robertson LW, Luthe G (2010) Trimethylsilyldiazomethane: a safe non-explosive, cost effective and less-toxic reagent for phenol derivatization in GC applications. Environ Int 36:835–842

    Article  CAS  Google Scholar 

  • Winkler DA, Mombelli E, Pietroiusti A, Tran L, Worth A, Fadeel B, McCall MJ (2013) Applying quantitative structure-activity relationship approaches to nanotoxicology: current status and future potential. Toxicology 313:15–23

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health through research grants R01 CA038683 and P42ES 013661. We also acknowledge programmatic support through the University of Iowa Environmental Health Sciences Research Center (NIH grant P30 ES05605). Partial support was provided to Dr. Gregor Luthe by the Alexander von Humboldt Foundation. The project was financially supported by the Tech for Future fund, an initiative of the Saxion and Windesheim Universities of Applied Sciences and the regional government Overijsel, The Netherlands. The contents of this paper are solely the responsibility of the authors and do not necessarily represent the official views of the granting agencies.

Conflict of Interest

The authors state that no conflict of interest exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. van ‘t Erve.

Additional information

Responsible editor: Philippe Garrigues

E. J. Ekuase and T. J. van ‘t Erve contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ekuase, E.J., van ‘t Erve, T.J., Rahaman, A. et al. Mechanistic insights into the specificity of human cytosolic sulfotransferase 2A1 (hSULT2A1) for hydroxylated polychlorinated biphenyls through the use of fluoro-tagged probes. Environ Sci Pollut Res 23, 2119–2127 (2016). https://doi.org/10.1007/s11356-015-4886-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4886-8

Keywords

Navigation