Skip to main content
Log in

Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This work compared the toxicity of ZnO nanoparticles (ZnO-NPs), ZnO bulk, and ZnCl2 on microbial activity (C and N transformations and dehydrogenase and phosphatase activities) and their uptake and toxic effects (emergence, root elongation, and shoot growth) on three plant species namely wheat, radish, and vetch in a natural soil at 1000 mg Zn kg−1. Additionally, plants were also tested at 250 mg Zn kg−1. The effects of the chemical species on Zn extractability in soil were studied by performing single and sequential extractions. ZnCl2-1000 presented the highest toxicity for both taxonomic groups. For microorganisms, ZnO-NPs demonstrated adverse effects on all measured parameters, except on N transformations. The effects of both ZnO forms were similar. For plants, ZnO-NPs affected the growth of more plant species than ZnO bulk, although the effects were small in all cases. Regarding accumulation, the total Zn amounts were higher in plants exposed to ZnO-NP than those exposed to ZnO bulk, except for vetch shoots. The soil sequential extraction revealed that the Zn concentration in the most labile forms (water soluble (WS) and exchangeable (EX)) was similar in soil treated with ZnO (NP and bulk) and lower than that of ZnCl2-treated soil, indicating the higher availability of the ionic forms. The strong correlations obtained between WS-Zn fraction and the Zn concentrations in the roots, shoots, and the effects on shoot weight show the suitability of this soil extraction method for predicting bioavailable Zn soil for the three plant species when it was added as ZnO-NPs, ZnO bulk, or ZnCl2. In this work, the hazard associated with the ZnO-NPs was similar to ZnO bulk in most cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133:25–46

    Article  CAS  Google Scholar 

  • Bartkowiak A, Lemanowicz J (2014) Application of biochemical tests to evaluate the pollution of the Unislaw basin soils with heavy metals. Int J Environ Res 8(1):93–100

    CAS  Google Scholar 

  • Capaldi Arruda SC, Diniz Silva AL, Moretto Galazzi R, Antunes Azevedo R, Zezzi Arruda MA (2015) Nanoparticles applied to plant science: a review. Talanta 131:693–705

    Article  CAS  Google Scholar 

  • Carbonell G, Pablos MV, García MP, Ramos C, Sánchez P, Fernández C, Tarazona JV (2000) Rapid and cost-effective multiparameter toxicity tests for soil microorganisms. Sci Total Environ 247:143–150

    Article  CAS  Google Scholar 

  • Collins D, Luxton T, Kumar N, Shah S, Walter VK et al (2012) Assessing the impact of copper and zinc oxide nanoparticles on soil: a field study. PLoS ONE 7(8), e42663. doi:10.1371/journal.pone.0042663

    Article  CAS  Google Scholar 

  • Coutris C, Joner EJ, Oughton DH (2012) Aging and soil organic matter content affect the fate of silver nanoparticles in soil. Sci Total Environ 420:327–333

    Article  CAS  Google Scholar 

  • Degryse F, Smolders E, Parker DR (2009) Partitioning of metals (Cd, Co, Cu, Ni, Pb, Zn) in soils: concepts, methodologies, prediction and applications—a review. Eur J Soil Sci 60:509–612

    Article  Google Scholar 

  • Dimkpa CO, Latta DE, McLean JE, Britt DW, Boyanov MI, Anderson AJ (2013) Fate of CuO and ZnO nano- and microparticles in the plant environment. Environ Sci Technol 47:4734–4742

    Article  CAS  Google Scholar 

  • Du W, Sun Y, Ji R, Zhu J, Wu J, Guo H (2011) TiO2 and ZnO nanoparticles negatively affect wheat growth and soil enzyme activities in agricultural soil. J Environ Monit 13:822

    Article  CAS  Google Scholar 

  • Feng MH, Shan XQ, Zhang S, Wen B (2005) A comparison of the rhizosphere-based method with DTPA, EDTA, CaCl2, and NaNO3 extraction methods for prediction of bioavailability of metals in soil to barley. Environ Pollut 137(2):231–240

    Article  CAS  Google Scholar 

  • Fernandez D, Garcia-Gomez C, Babín M (2013) In vitro evaluation of cellular responses induced by ZnO nanoparticles, zinc ions and bulk ZnO in fish cells. Sci Total Environ 452–453:262–274

    Article  Google Scholar 

  • Fernandez MD, Alonso-Blazquez MN, Garcia-Gomez C, Babín M (2014) Evaluation of zinc oxide nanoparticle toxicity in sludge products applied to agricultural soil using multispecies soil systems. Sci Total Environ 497–498:688–696

    Article  Google Scholar 

  • Fraç, Jezierska-Tys (2011) Agricultural utilization of dairy sewage sludge: its effect on enzymatic activity and microorganisms of the soil environment. Afr J Microbiol Res 5(14):1755–1762

    Google Scholar 

  • Frederick OO, Iroha AE, Oswald EC (2014) Evaluation of the concentration of selected heavy metals and the effects on soil enzymatic activities in an abandoned cement factory Nigercem Nkalagu and its environs. Int J Biochem Res Rev 4(1):16–27

    Article  Google Scholar 

  • Freeman C, Liska G, Ostle N, Jones SE, Lock MA (1995) The use of fluorogenic substrates for measuring enzyme activity in peatlands. Plant Soil 175:147–152

    Article  CAS  Google Scholar 

  • Garcia-Gomez C, Babin M, Obrador A, Alvarez JM, Fernandez MD (2014a) Toxicity of ZnO nanoparticles, ZnO and ZnCl2 on earthworms in a spiked natural soil and toxicological effects of leachates on aquatic organisms. Arch Environ Contam Toxicol. doi:10.1007/s00244-014-0025-7

    Google Scholar 

  • Garcia-Gomez C, Esteban E, Sanchez-Pardo B, Fernandez MD (2014b) Assessing the ecotoxicological effects of long-term contaminated mine soils on plants and earthworms. Relevance of soil (total and available) and body concentrations. Ecotoxicology 23:1195–1209

    Article  CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  Google Scholar 

  • Hass A, Fine P (2010) Sequential selective extraction procedures for the study of heavy metals in soils, sediments, and waste materials. A critical review. Crit Rev Environ Sci Technol 40:365–399

    Article  CAS  Google Scholar 

  • Heggelund LR, Diez-Ortiz M, Lofts S, Lahive E, Jurkschat K, Wojnarowicz J, Cedergreen N, Spurgeon D, Svendsen C (2014) Soil effects on the comparative toxicity of dissolved zinc, non-nano and nano ZnO to the earthworm Eisenia fetida. Nanotoxicology 8(5):559–572

    Article  CAS  Google Scholar 

  • Hooper HL, Kerstin J, Morgan AJ, Bailey J, Lawlor AJ (2011) Comparative chronic toxicity of nanoparticulate and ionic zinc to the earthworm Eisenia veneta in a soil matrix. Environ Int 37:1111–1117

    Article  CAS  Google Scholar 

  • ISO 11260 (1994) Soil quality—determination of effective cation exchange capacity and base saturation level using barium chloride solution

  • Kool PL, Diez Ortiz M, van Gestel CAM (2011) Chronic toxicity of ZnO nanoparticles, non-nano ZnO and ZnCl2 to Folsomia candida (Collembola) in relation to bioavailability in soil. Environ Pollut 159:2713–2719

    Article  CAS  Google Scholar 

  • Lee S, Kim S, Kim S, Lee I (2013) Assessment of phytotoxicity of ZnO-NPs on a medicinal plant, Fagopyrum esculentum. Environ Sci Pollut Res 20:848–854

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250

    Article  CAS  Google Scholar 

  • Lopez-Moreno M, de la Rosa G, Hernández-Viezcas J, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    Article  CAS  Google Scholar 

  • Ma H, Williams PL, Diamond SA (2013) Ecotoxicity of manufactured ZnO nanoparticles. A review. Environ Pollut 172:76–85

    Article  CAS  Google Scholar 

  • MAPA (Ministerio de Agricultura, Pesca y Alimentación) (1994) Métodos oficiales de análisis, vol 3. Secretaría General Técnica, Madrid

    Google Scholar 

  • Mukherjee A, Bandyopadhyay S, Rico CR, Zhao L, Gardea-Torresdey JL (2014) Physiological effects of nanoparticulate ZnO in green peas (Pisum sativum L.) cultivated in soil. Metallomics. doi:10.1039/C3MT00064H

    Google Scholar 

  • Organization for Economic Cooperation and Development (OECD) Guidelines for testing of chemicals. Soil microorganisms, carbon transformation test. Test guideline No. 217. Paris, France. 2000a

  • Organization for Economic Cooperation and Development (OECD) Guidelines for testing of chemicals. Soil microorganisms, nitrogen transformation test. Test guideline No. 216. Paris, France. 2000b

  • Peralta-Videa JR, Hernandez-Viezcas JA, Zhao L, Corral Diaz B, Ge Y, Priester JH, Holden PA, Gardea-Torresdey JA (2014) Cerium dioxide and zinc oxide nanoparticles alter the nutritional value of soil cultivated soybean plants. Plant Physiol Biochem 80:128–135

    Article  CAS  Google Scholar 

  • Pietrzak U, McPhail DC (2004) Copper accumulation distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma 122:151–166

    Article  CAS  Google Scholar 

  • Pokhrel LR, Dubey B (2013) Evaluation of developmental responses of two crop plants exposed to silver and zinc oxide nanoparticles. Sci Total Environ 452–453:321–332

    Article  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey J (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  Google Scholar 

  • Römkens PF, Guo H, Chu C, Liu T, Chiang C, Koopmans GF (2009) Characterization of soil heavy metal pools in paddy fields in Taiwan: chemical extraction and solid-solution partitioning. J Soils Sediments 9:216–228

    Article  Google Scholar 

  • Schultz E, Joutti A, Räisänen M, Lintinen P, Martikainen E, Lehto O (2004) Extractability of metals and ecotoxicity of soils from two old wood impregnation sites in Finland. Sci Total Environ 326:71–84

    Article  CAS  Google Scholar 

  • Thomson LM, Frederick RR (2002) Soils and fertility. McGraw-Hill. Ed. Reverte

  • Waalewijn-Kool PL, Diez-Ortiz M, van Gestel CAM (2012) Effect of different spiking procedures on the distribution and toxicity of ZnO nanoparticles in soil. Ecotoxicology 21:1797–1804

    Article  CAS  Google Scholar 

  • Zhao L, Peralta-Videa JR, Ren M, Varela-Ramirez A, Li C, Hernández-Viezcas JA, Aguilera JR, Gardea-Torresdey JL (2012a) Transport of Zn in a sandy loam soil treated with ZnO-NPs and uptake by corn plants: electron microprobe and confocal microscopy studies. Chem Eng J 184:1–8

    Article  CAS  Google Scholar 

  • Zhao LJ, Peralta-Videa JR, Hernandez-Viezcas JA, Hong J, Gardea-Torresdey JL (2012b) Transport and retention behaviour of ZnO nanoparticles in two natural soils: effect of surface coating and soil composition. J Nanoparticle Res 17:229–242

    CAS  Google Scholar 

  • Zhao L, Hernandez-Viezcas JA, Peralta-Videa JR, Bandyopadyay S, Peng B, Munoz B, Keller AA, Gardea-Torresdey JL (2013) ZnO nanoparticle fate in soil and zinc bioaccumulation in corn plants (Zea mays) influenced by alginate. Environ Sci: Proc Impacts 15:260–266

    CAS  Google Scholar 

  • Zhou D, Jin S, Li L, Wang Y, Wenh N (2011) Quantifying the adsorption and uptake of CuO nanoparticles by wheat root based on chemical extractions. JESC 23(11):1852–1857

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Spanish projects RTA2010-00018-00-00 and RTA2013-00091-C02-01. We appreciate the lab assistance from Carmen del Rio and José Pareja.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. García-Gómez.

Additional information

Responsible editor: Zhihong Xu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Gómez, C., Babin, M., Obrador, A. et al. Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil. Environ Sci Pollut Res 22, 16803–16813 (2015). https://doi.org/10.1007/s11356-015-4867-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4867-y

Keywords

Navigation