Skip to main content

Advertisement

Log in

Changes in chemical forms, subcellular distribution, and thiol compounds involved in Pb accumulation and detoxification in Athyrium wardii (Hook.)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Athyrium wardii is one of the dominant plant species flourishing on the Pb–Zn mine tailings in Sichuan Province, China. A greenhouse pot experiment was conducted to evaluate the chemical forms, subcellular distribution, and thiol compounds in A. wardii under different Pb treatments. The results showed that plants of the mining ecotype (ME) of A. wardii were more tolerant to Pb than those of the non-mining ecotype (NME) in spite of accumulation of higher Pb concentrations. The Pb concentrations in shoots and roots of the ME were 3.2∼8.6 times and 3.0∼24.6 times higher than those of the NME, respectively. The ME was more efficient in Pb uptake than the NME. Moreover, 27.8∼39.0 % of the total Pb in ME was sodium chloride (NaCl) extractable and 38.0∼48.5 % was acetic acid (HAc) extractable, whereas only a minority of total Pb was in ethanol and H2O extractable. In subcellular level, 77.4∼88.8 % of total Pb was stored in the cell walls of ME and 9.0∼18.9 % in soluble fractions. Increasing Pb concentrations enhanced sequestration of Pb into the cell walls and soluble fractions of ME tissues to protect organelles against Pb. Synthesis of non-protein thiols (NP-SH) and phytochelatins (PCs) in roots of ME significantly enhanced in response to Pb stress, and significant increases in glutathione (GSH) were observed in shoots of ME. Higher levels of NP-SH, GSH, and PCs were observed in roots of the ME comparing with NME, especially under high Pb treatments. The results indicated that Pb was localized mainly in cell wall and soluble fraction of ME plants with low biological activity by cell wall deposition and vacuolar compartmentalization, which might be the important adapted Pb detoxification mechanisms of ME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarenga P, Goncalves AP, Fernandes RM, De Varennes A, Vallini G, Duarte E, Cunha-Queda AC (2008) Evaluation of composts and liming materials in the phytostabilization of a mine soil using perennial ryegrass. Sci Total Environ 406:43–56

    Article  CAS  Google Scholar 

  • Amalia MM, Ernesto FT, Fernando RC, Tania LVS (2011) Lead bioaccumulation in Acacia farnesiana and its effect on lipid peroxidation and glutathione production. Plant Soil 339:377–389

    Article  Google Scholar 

  • Andra SS, Datta R, Sarkar D, Makris KC, Mullens CP, Sahi SV, Stephan BH (2010) Synthesis of phytochelatins in vetiver grass upon lead exposure in the presence of phosphorus. Plant Soil 326:171–185

    Article  CAS  Google Scholar 

  • Antoniadis V, Robinson JS, Alloway BJ (2008) Effects of short-term pH fluctuations on cadmium, nickel, lead, and zinc availability to ryegrass in a sewage sludge-amended field. Chemosphere 71:759–764

    Article  CAS  Google Scholar 

  • Bhargava A, Carmona FF, Bhargava M, Srivastava S (2012) Approaches for enhanced phytoextraction of heavy metals. J Environ Manage 105:103–120

    Article  CAS  Google Scholar 

  • Chandra SS, Pranav KC, Virendra M (2008) The role of phytochelatins and antioxidants in tolerance to Cd accumulation in Brassica juncea L. Ecotox Environ Safe 71:76–85

    Article  Google Scholar 

  • Claudia S, Cesar V, Rosanna G (2008) Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Total Environ 395:1–10

    Article  Google Scholar 

  • Ellman GL (1959) Tissue sulfhydryl groups. Arch Biochem Biophys 82:70–77

    Article  CAS  Google Scholar 

  • Estrella-Gómez NE, Mendoza-Cozatl DG, Moreno SR, González MD, Zapata PO, Martínez HA, Santamaría JM (2009) The Pb-hyperaccumulator aquatic fern Salvinia minima Baker, responds to Pb2+ by increasing phytochelatins via changes in SmPCS expression and in phytochelatin synthase activity. Aquat Toxicol 91:320–328

    Article  Google Scholar 

  • Estrella-Gómez NE, Sauri-Duch E, Zapata-Pérez O, Santamaría JM (2012) Glutathione plays a role in protecting leaves of Salvinia minima from Pb2+ damage associated with changes in the expression of SmGS genes and increased activity of GS. Environ Exp Bot 75:188–194

    Article  Google Scholar 

  • Fernández R, Bertrand A, García JI, Tamés RS, González A (2012) Lead accumulation and synthesis of non-protein thiolic peptides in selected clones of Melilotus alba and Melilotus officinalis. Environ Exp Bot 78:18–24

    Article  Google Scholar 

  • Florence A, Mouna F, Patricia M, Anaïs B, Laurent L, Mohamed EM, Abdelkarim FM, Patrick D, Abdelaziz S (2013) Lead tolerance and accumulation in Hirschfeldia incana, a Mediterranean Brassicaceae from metalliferous mine spoils. PLoS ONE 8:1–10

    Google Scholar 

  • Fu XP, Dou CM, Chen YX, Chen XC, Shi JY, Yu MG, Xu J (2011) Subcellular distribution and chemical forms of cadmium in Phytolacca americana L. J Hazard Mater 186:103–107

    Article  CAS  Google Scholar 

  • Gupta DK, Huang HG, Yang XE, Razafindrabe BHN, Inouheb M (2010) The detoxification of lead in Sedum alfredii H. is not related to phytochelatins but the glutathione. J Hazard Mater 177:437–444

    Article  CAS  Google Scholar 

  • Gupta DK, Huang HG, Corpas FJ (2013) Lead tolerance in plants: strategies for phytoremediation. Environ Sci Pollut Res 20:2150–2161

    Article  CAS  Google Scholar 

  • Huang HG, Li TX, Tian SK, Gupta DK, Zhang XZ, Yang XE (2008) Role of EDTA in alleviating lead toxicity in accumulator species of Sedum alfredii H. Bioresource Technol 99:6088–6096

    Article  CAS  Google Scholar 

  • He SY, Wua QL, He ZL (2013) Effect of DA-6 and EDTA alone or in combination on uptake, subcellular distribution and chemical form of Pb in Lolium perenne. Chemosphere 93:2782–2788

    Article  CAS  Google Scholar 

  • Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226

    Article  CAS  Google Scholar 

  • Isaure MP, Fayard B, Sarret G, Pairis S, Bourguignon J (2006) Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spectromicroscopy. Spectrochim Acta B 61:1242–1252

    Article  Google Scholar 

  • Justin V, Majid NM, Islam MM, Abdu A (2011) Assessment of heavy metal uptake and translocation in Acacia mangium for phytoremediation of cadmium-contaminated soil. J Food Agric Environ 9:588–592

    Google Scholar 

  • Krämer U (2000) Cadmium for all meals—plants with an unusual appetite. New Phytol 145:1–3

    Article  Google Scholar 

  • Liana VR, Fernando TN, Júlia GF, Denise C, Luciane AT, Fabiane GA, Valderi LD, Vera MM, Maria RCS (2012) Effects of lead on the growth, lead accumulation and physiological responses of Pluchea sagittalis. Ecotoxicology 21:111–123

    Article  Google Scholar 

  • Lux A, Vaculík M, Martinka M, Lišková D, Kulkarni MG, Stirk WA, Van Staden J (2011) Cadmium induces hypodermal periderm formation in the roots of the monocotyledonous medicinal plant Merwilla plumbea. Ann Bot 107:285–292

    Article  CAS  Google Scholar 

  • Ma JF, Daisei U, Zhao FJ, Steve PM (2005) Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta 220:731–736

    Article  CAS  Google Scholar 

  • Maserti BE, Ferrillo V, Avdis O, Nesti U, Garbo AD, Catsiki A, Maestrini PL (2005) Relationship of non-protein thiol pools and accumulated Cd or Hg in the marine macrophyte Posidonia oceanica (L.) Delile. Aquat Toxicol 75:288–292

    Article  CAS  Google Scholar 

  • Mendez MO, Maier RM (2008) Phytostabilization of mine tailings in arid and semiarid environments-an emerging remediation technology. Environ Health Perspect 116:278–283

    Article  CAS  Google Scholar 

  • Michael R, Krauss GJ, Gregor G, Dirk W (2006) Sulphate assimilation under Cd2+ stress in Physcomitrella patens—combined transcript, enzyme and metabolite profiling. Plant Cell Environ 29:1801–1811

    Article  Google Scholar 

  • Machado-Estrada B, Calderón J, Moreno-Sánchez R, Rodríguez-Zavala JS (2013) Accumulation of arsenic, lead, copper, and zinc, and synthesis of phytochelatins by indigenous plants of a mining impacted area. Environ Sci Pollut Res 20:3946–3955

    Article  CAS  Google Scholar 

  • Małecka A, Piechalak A, Morkunas I, Tomaszewska B (2008) Accumulation of lead in root cells of Pisum sativum. Acta Physiol Plant 30:629–637

    Article  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Kumar R, Seth CS, Gupta DK (2006a) Lead detoxification by coontail (Ceratophyllum demersum L.) involves induction of phytochelatins and antioxidant system in response to its accumulation. Chemosphere 65:1027–1039

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006b) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Bioch 44:25–37

    Article  CAS  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Trivedi PK (2008) Thiol metabolism and antioxidant systems complement each other during arsenate detoxification in Ceratophyllum demersum L. Aquat Toxicol 86:205–215

    Article  CAS  Google Scholar 

  • Mishra S, Tripathi RD, Srivastava S, Dwivedi SJ, Trivedi PK, Dhankher OP, Khare A (2009) Thiol metabolism play significant role during cadmium detoxification by Ceratophyllum demersum L. Bioresource Technol 100:2155–2161

    Article  CAS  Google Scholar 

  • Nouri J, Lorestani B, Yousefi N, Khorasani N, Hasani AH, Seif F, Cheraghi M (2011) Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead–zinc mine (Hamedan, Iran). Environ Earth Sci 62:639–644

    Article  CAS  Google Scholar 

  • Ragini S, Tripathi RD, Sanjay D, Amit K, Trivedi PK, Chakrabarty D (2010) Lead bioaccumulation potential of an aquatic macrophyte Najas indica are related to antioxidant system. Bioresource Technol 101:3025–3032

    Article  Google Scholar 

  • Rouhier N, Lemaire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–66

    Article  CAS  Google Scholar 

  • Salazar MJ, Pignata ML (2014) Lead accumulation in plants grown in polluted soils. Screening of native species for phytoremediation. J Geochem Explor 137:29–36

    Article  CAS  Google Scholar 

  • Sarah CRS, Sara ALA, Lucas AS, Marlene AS (2012) Lead tolerance and phytoremediation potential of Brazilian leguminous tree species at the seedling stage. J Environ Manag 110:299–307

    Article  Google Scholar 

  • Sharma P, Dubey RS (2005) Lead toxicity in plants. Braz J Plant Physiol 17:35–52

    Article  CAS  Google Scholar 

  • Tian SK, Lu LL, Yang XE, Samuel MW, Du YH, Patrick HB (2010) Spatial imaging and speciation of lead in the accumulator plant Sedum alfredii by microscopically focused synchrotron X-ray investigation. Environ Sci Technol 44:5920–5926

    Article  CAS  Google Scholar 

  • Vogel-Mikuš K, Arčon I, Kodre A (2010) Complexation of cadmium in seeds and vegetative tissues of the cadmium hyperaccumulator Thlaspi praecox as studied by X-ray absorption spectroscopy. Plant Soil 331:439–451

    Article  Google Scholar 

  • Waranusantigul P, Lee H, Kruatrachue M, Pokethitiyook P, Auesukaree C (2011) Isolation and characterization of lead-tolerant Ochrobactrum intermedium and its role in enhancing lead accumulation by Eucalyptus camaldulensis. Chemosphere 85:584–590

    Article  CAS  Google Scholar 

  • Wang X, Liu YG, Zeng GM, Chai LY, Song XC, Min ZY, Xiao X (2008) Subcellular distribution and chemical forms of cadmium in Bechmeria nivea (L.) Gaud. Environ Exp Bot 62:389–395

    Article  CAS  Google Scholar 

  • Weng BS, Xie XY, Weiss DJ, Liu JC, Lu HL, Yan CL (2012) Kandelia obovata (S., L.) Yong tolerance mechanisms to cadmium: subcellular distribution, chemical forms and thiol pools. Mar Pollut Bull 64:2453–2460

    Article  CAS  Google Scholar 

  • Wu Q, Lu YF, Shi JZ, Liang SX, Shi JS, Liu J (2011) Chemical form of metals in traditional medicines underlines potential toxicity in cell cultures. J Ethnopharmacol 134:839–843

    Article  CAS  Google Scholar 

  • Wójcik M, Tukiendorf A (2014) Accumulation and tolerance of lead in two contrasting ecotypes of Dianthus carthusianorum. Phytochemistry 100:60–65

    Article  Google Scholar 

  • Xin JL, Huang BF, Yang ZY, Yuan JG, Zhang YD (2013) Comparison of cadmium subcellular distribution in different organs of two water spinach (Ipomoea aquatica Forsk.) cultivars. Plant Soil 373:431–444

    Article  Google Scholar 

  • Xu QS, Min HL, Cai SJ, Fu YY, Sha S, Xie KB, Du KH (2012) Subcellular distribution and toxicity of cadmium in Potamogeton crispus L. Chemosphere 89:114–120

    Article  CAS  Google Scholar 

  • Yadav SK (2010) Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins in heavy metal stress tolerance of plants. S Afr J Bot 76:167–179

    Article  CAS  Google Scholar 

  • Zeng XW, Mab LQ, Qiu RL, Tang YT (2009) Responses of non-protein thiols to Cd exposure in Cd hyperaccumulator Arabis paniculata Franch. Environ Exp Bot 66:242–248

    Article  Google Scholar 

  • Zeng FR, Shafaqat A, Zhang HT, Ouyang YN, Qiu BO, Wu FB, Zhang GP (2011) The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environ Pollut 159:84–91

    Article  CAS  Google Scholar 

  • Zhang SJ, Li TX, Huang HG, Zou TJ, Zhang XZ, Yu HY, Zheng ZC, Wang YD (2012) Cd accumulation and phytostabilization potential of dominant plants surrounding mining tailings. Environ Sci Pollut Res 19:3879–3888

    Article  CAS  Google Scholar 

  • Zhang SJ, Li TX, Huang HG, Zou TJ, Zhang XZ, Yu HY, Zheng ZC, Wang YD, Zou TJ, Hao XQ, Pu Y (2014a) Phytoremediation of cadmium using plant species of Athyrium wardii (Hook.). Int J Environ Sci Technol 11:757–764

    Article  CAS  Google Scholar 

  • Zhang W, Lin KF, Zhou J, Zhang W, Liu LL, Zhang QQ (2014b) Cadmium accumulation, sub-cellular distribution and chemical forms in rice seedling in the presence of sulfur. Environ Toxicol Phar 37:348–353

    Article  CAS  Google Scholar 

  • Zhou YQ, Huang SZ, Yu SL, Gu JG, Zhao JZ, Han YL, Fu JJ (2010) The physiological response and sub-cellular localization of lead and cadmium in Iris pseudacorus L. Ecotoxicology 19:69–76

    Article  CAS  Google Scholar 

  • Zhu QH, Huang DY, Liu SL, Luo ZC, Rao ZX, Cao XL, Ren XF (2013) Accumulation and subcellular distribution of cadmium in ramie (Boehmeria nivea L. Gaud.) planted on elevated soil cadmium contents. Plant Soil Environ 59:57–61

    CAS  Google Scholar 

  • Zou TJ, Li TX, Zhang XZ, Yu HY, Huang HG (2012) Lead accumulation and phytostabilization potential of dominant plant species growing in a lead–zinc mine tailing. Environ Earth Sci 65:621–630

    Article  CAS  Google Scholar 

  • Zou TJ, Li TX, Zhang XZ, Yu HY, Luo HB (2011) Lead accumulation and tolerance characteristics of Athyrium wardii (Hook.) as a potential phytostabilizer. J Hazard Mater 186:683–689

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was carried out with support from the Sichuan Science and Technology Support Program (2013NZ0029), the Sichuan Science and Technology Support Program (2014NZ0008), and the Project of Sichuan Education Department (14ZB0017). The authors also wish to thank Craig Stapleton and Shujin Zhang for their critical comments regarding the language and construction of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tingxuan Li.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, L., Li, T., Yu, H. et al. Changes in chemical forms, subcellular distribution, and thiol compounds involved in Pb accumulation and detoxification in Athyrium wardii (Hook.). Environ Sci Pollut Res 22, 12676–12688 (2015). https://doi.org/10.1007/s11356-015-4464-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4464-0

Keywords

Navigation