Skip to main content

Advertisement

Log in

Spatial distribution and temporal trends of mercury and arsenic in remote timberline coniferous forests, eastern of the Tibet Plateau, China

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

An intensive investigation was conducted to study the spatial distribution and temporal variety trend of mercury and arsenic in plant tissue and soil profile in the eastern of the Tibet Plateau and to explore the possible sources of these two elements. At present, rare information is available on mercury (Hg) and arsenic (As) of timberline forests in the Tibet Plateau. Here, we present preliminary results on these two elements in leaves, twigs, root, litterfall, and soil. Geostatistical analyst of the ArcGIS 10.0 was used to determine the trait of spatial distribution of these two elements. Total arsenic (TAs) mean concentrations in the leaves, twigs, root, litterfall, and A- and C-layer soil ranged from 0.12 mg kg−1 (n = 60), 0.35 mg kg−1 (n = 60), 0.48 mg kg−1 (n = 42), 1.52 mg kg−1 (n = 84), 16.51 mg kg−1 (n = 69), and 26.72 mg kg−1 (n = 69), respectively. Total Hg (THg) mean concentrations in leaves, twigs, root, litterfall, and A- and C-layer soil were 0.0121 mg kg−1 (n = 60), 0.0078 mg kg−1 (n = 60), 0.0171 mg kg−1 (n = 42), 0.0479 mg kg−1 (n = 84), 0.0852 mg kg−1 (n = 75), and 0.0251 mg kg−1 (n = 75), respectively. In general, litterfall trended to accumulate high concentrations of Hg and As. Mercury in the timberline forest showed an increasing trend, whereas arsenic concentrations showed a decreasing trend in A-layer soil and an increasing trend in C-layer soil due to the easy mobile ability of As. Southwest and southeast monsoon could be the influencing factors, and Hg emission from India and China was the possible source of this study area through using a HYSPLIT (Hybrid Single-Particle Lagrangian Integrated Trajectory) model. It is believed that these observations may offer scientists and policymakers additional understanding of Hg and As concentrations in the remote timberline area, eastern of the Tibet Plateau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer, New York

    Book  Google Scholar 

  • Amos HM, Jacob DJ, Holmes CD, Fisher JA, Wang Q, Yantosca RM, Corbitt ES, Galarneau E, Rutter AP, Gustin MS, Steffen A, Schauer JJ, Graydon JA, St. Louis VL, Talbot RW, Edgerton ES, Zhang Y, Sunderland EM (2012) Gas-particle partitioning of atmospheric Hg(II) and its effect on global mercury deposition. Atmos Chem Phys 12:591–603. doi:10.5194/acp-12-591-2012

    Article  CAS  Google Scholar 

  • Barbosa AC, de Souza J, Dorea JG, Jardim WF, Fadini PS (2003) Mercury biomagnification in a tropical black water, Rio Negro, Brazil. Arch Environ Contam Toxicol 45:235–246

    Article  CAS  Google Scholar 

  • Bienert GP, Jahn TP (2010) Major intrinsic proteins and arsenic transport in plants: new players and their potential role. Adv Exp Med Biol 679:111–126

    Article  CAS  Google Scholar 

  • Bieser J, Simone FD, Gencarelli C, Geyer B, Hedgecock I, Matthias V, Travnikov O, Weigelt A (2014) A diagnostic evaluation of modeled mercury wet depositions in Europe using atmospheric speciated high-resolution observations. Environ Sci Pollut Res 21:9995–10012

    Article  CAS  Google Scholar 

  • Bishop KH, Lee Y-H, Munthe J, Dambrine E (1998) Xylem sap as a pathway for total mercury and methylmercury transport from soils to tree canopy in the boreal forest. Biogeochemistry 40:101–113

    Article  Google Scholar 

  • Bushey JT, Nallana AG, Montesdeoca MR, Driscoll CT (2008) Mercury dynamics of a northern hardwood canopy. Atmos Environ 42:6905–6914

    Article  CAS  Google Scholar 

  • Chen J, Wei F, Zheng C, Wu Y, Adriano DC (1991) Background concentrations of elements in soils of China. Water Air Soil Pollut 57:699–712

    Article  Google Scholar 

  • Clarkson TW, Magos L, Myers GJ (2003) The toxicology of mercury—current exposures and clinical manifestations. N Engl J Med 349:1731–1737

    Article  CAS  Google Scholar 

  • Cong Z, Kang S, Zhang Y, Li X (2010) Atmospheric wet deposition of trace elements to central Tibetan Plateau. Appl Geochem 25:1415–1421

    Article  CAS  Google Scholar 

  • Cong Z, Kang S, Luo C, Li Q, Huang J, Gao S, Li X (2011) Trace elements and lead isotopic composition of PM10 in Lhasa, Tibet. Atmos Environ 45:6210–6215

    Article  CAS  Google Scholar 

  • da Costa GM, dos Anjos LM, Souza GS, Gomes BD, Saito CA, Pinheiro Mda C, Ventura DF, da Silva Filho M, Silveira LC (2008) Mercury toxicity in Amazon gold miners: visual dysfunction assessed by retinal and cortical electrophysiology. Environ Res 107:98–107

    Article  Google Scholar 

  • Demers JD, Driscoll CT, Fahey TJ, Yavitt JB (2007) Mercury cycling in litter and soil in different forest types in the Adirondack region, New York, USA. Ecol Appl 17:1341–1351

    Article  Google Scholar 

  • Dillon ME, Wang G, Huey RB (2010) Global metabolic impacts of recent climate warming. Nature 467:704–706

    Article  CAS  Google Scholar 

  • Ericksen J, Gustin M, Schorran D, Johnson D, Lindberg S, Coleman J (2003) Accumulation of atmospheric mercury in forest foliage. Atmos Environ 37:1613–1622

    Article  CAS  Google Scholar 

  • Feng X, Qiu G, Fu X, He T, Li P, Wang S (2009) Mercury pollution in the environment. Prog Chem 21:436–457

    CAS  Google Scholar 

  • Fu X, Feng X, Zhu W, Rothenberg S, Yao H, Zhang H (2010) Elevated atmospheric deposition and dynamics of mercury in a remote upland forest of southwestern China. Environ Pollut 158:2324–2333

    Article  CAS  Google Scholar 

  • Graydon JA, St. Louis VL, Lindberg SE, Hintelmann H, Krabbenhoft DP (2006) Investigation of mercury exchange between forest canopy vegetation and the atmosphere using a new dynamic chamber. Environ Sci Technol 40:4680–4688

    Article  CAS  Google Scholar 

  • Grigal D, Kolka RK, Fleck J, Nater E (2000) Mercury budget of an upland-peatland watershed. Biogeochemistry 50:95–109

    Article  CAS  Google Scholar 

  • Harada M (1995) Minamata disease: methylmercury poisoning in Japan caused by environmental pollution. Crit Rev Toxicol 25:1–24

    Article  CAS  Google Scholar 

  • Huang H (2014) Regression of arsenic in Shimen town. Saf Health 4:34–35, In Chinese

    Google Scholar 

  • Huang J, Kang S, Zhang Q, Jenkins MG, Guo J, Zhang G, Wang K (2012a) Spatial distribution and magnification processes of mercury in snow from high-elevation glaciers in the Tibetan Plateau. Atmos Environ 46:140–146

    Article  CAS  Google Scholar 

  • Huang J, Kang S, Zhang Q, Yan H, Guo J, Jenkins MG, Zhang G, Wang K (2012b) Wet deposition of mercury at a remote site in the Tibetan Plateau: concentrations, speciation, and fluxes. Atmos Environ 62:540–550

    Article  CAS  Google Scholar 

  • Huang J, Kang S, Wang S, Wang L, Zhang Q, Guo J, Wang K, Zhang G, Tripathee L (2013a) Wet deposition of mercury at Lhasa, the capital city of Tibet. Sci Total Environ 447:123–132

    Article  CAS  Google Scholar 

  • Huang J, Kang S, Zhang Q, Guo J, Chen P, Zhang G, Tripathee L (2013b) Atmospheric deposition of trace elements recorded in snow from the Mt. Nyainqêntanglha region, southern Tibetan Plateau. Chemosphere 92:871–881

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2010) Trace elements in soils and plants. CRC, Boca Raton

    Book  Google Scholar 

  • Li C, Kang S, Zhang Q (2009) Elemental composition of Tibetan Plateau top soils and its effect on evaluating atmospheric pollution transport. Environ Pollut 157:2261–2265

    Article  CAS  Google Scholar 

  • Lindberg S, Jackson D, Huckabee J, Janzen S, Levin M, Lund J (1979) Atmospheric emission and plant uptake of mercury from agricultural soils near the Almaden mercury mine. J Environ Qual 8:572–578

    Article  CAS  Google Scholar 

  • Lindqvist O, Johansson K, Bringmark L, Timm B, Aastrup M, Andersson A, Hovsenius G, Håkanson L, Iverfeldt Å, Meili M (1991) Mercury in the Swedish environment—recent research on causes, consequences and corrective methods. Water Air Soil Pollut 55:xi–261

    Article  CAS  Google Scholar 

  • Loewen M, Kang S, Armstrong D, Zhang Q, Tomy G, Wang F (2007) Atmospheric transport of mercury to the Tibetan Plateau. Environ Sci Technol 41:7632–7638

    Article  CAS  Google Scholar 

  • Luo J, She J, Wu Y, Yu D, Chen Y, Zhou P (2013a) Cadmium distribution in a timberline forest in the Hengduan Mountains in the eastern Tibetan Plateau. Anal Lett 46:394–405

    Article  Google Scholar 

  • Luo J, Tang R, She J, Chen Y, Gong Y, Zhou J, Yu D (2013b) The chromium in timberline forests in the eastern Tibetan Plateau. Environ Sci Process Impacts 15:1930–1937

    Article  CAS  Google Scholar 

  • Millhollen A, Obrist D, Gustin M (2006) Mercury accumulation in grass and forb species as a function of atmospheric carbon dioxide concentrations and mercury exposures in air and soil. Chemosphere 65:889–897

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Pacyna JM, Sundseth K, Pacyna EG, Munthe J, Belhaj M, Åstrom S, Panasiuk D, Glodek A (2008) Socio-economic costs of continuing the status-quo of mercury pollution. Nordic Council of Ministers, Copenhagen

  • Rea A, Lindberg S, Scherbatskoy T, Keeler GJ (2002) Mercury accumulation in foliage over time in two northern mixed-hardwood forests. Water Air Soil Pollut 133:49–67

    Article  CAS  Google Scholar 

  • Schwesig D, Matzner E (2000) Pools and fluxes of mercury and methylmercury in two forested catchments in Germany. Sci Total Environ 260:213–223

    Article  CAS  Google Scholar 

  • Sheng J, Wang X, Gong P, Tian L, Yao T (2012) Heavy metals of the Tibetan top soils. Environ Sci Pollut Res 19:3362–3370

    Article  CAS  Google Scholar 

  • Tang R, Luo J, She J, Chen Y, Yang D, Zhou J (2015) The cadmium and lead of soil in timberline coniferous forests, Eastern Tibetan Plateau. Environ Earth Sci 73(1):303–310

    Article  CAS  Google Scholar 

  • Tang R, Luo J, Yang P, She J, Chen Y, Gong Y, Zhou J (2014) Trace metals of needles and litter in timberline forests in the Eastern of Tibetan Plateau, China. Ecol Indic 45:669–676

    Article  CAS  Google Scholar 

  • Tripathee L, Kang S, Huang J, Sharma CM, Sillanpää M, Guo J, Paudyal R (2014) Concentrations of trace elements in wet deposition over the Central Himalayas, Nepal. Atmos Environ 95:231–238

    Article  CAS  Google Scholar 

  • UNEP (United Nations Environment Programme) (2013) Global mercury report. UNEP, Geneva, 2013

    Google Scholar 

  • UNEP (2013) Global mercury assessment (2013): sources, emissions, releases and environmental transport. UNEP Chemicals Branch, Geneva, Switzerland

  • Wang X, Cheng G, Zhong X, Li M-H (2009) Trace elements in sub-alpine forest soils on the eastern edge of the Tibetan Plateau, China. Environ Geol 58:635–643

    Article  CAS  Google Scholar 

  • Wilson SJ, Steenhuisen F, Pacyna JM, Pacyna EG (2006) Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories. Atmos Environ 40:4621–4632

    Article  CAS  Google Scholar 

  • Wu Y, Bin H, Zhou J, Luo J, Yu D, Sun S, Li W (2011) Atmospheric deposition of Cd accumulated in the montane soil, Gongga Mt., China. J Soils Sediments 11:940–946

    Article  CAS  Google Scholar 

  • Yanao C, Junliang T (1993) Background value and distribution characteristic of soil of Tibetan province. Science, Beijing

    Google Scholar 

  • Zhang XP, Deng W, Yang XM (2002) The background concentrations of 13 soil trace elements and their relationships to parent materials and vegetation in Xizang (Tibet), China. J Asian Earth Sci 21:167–174

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (grants nos. 41471416, 41473078, and 40871042). The authors gratefully acknowledge the NOAA Air Resources Laboratory (ARL) for the provision of the HYSPLIT transport and dispersion model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiming Wang.

Additional information

Responsible editor: Stuart Simpson

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 11761 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, R., Wang, H., Luo, J. et al. Spatial distribution and temporal trends of mercury and arsenic in remote timberline coniferous forests, eastern of the Tibet Plateau, China. Environ Sci Pollut Res 22, 11658–11668 (2015). https://doi.org/10.1007/s11356-015-4441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4441-7

Keywords

Navigation