Skip to main content
Log in

Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant

  • Danio rerio as a Model in Aquatic Toxicology and Sediment Research
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The release of polycyclic aromatic hydrocarbons (PAHs) into the environment has increased very substantially over the last decades. PAHs are hydrophobic molecules which can accumulate in high concentrations in sediments acting then as major secondary sources. Fish contamination can occur through contact or residence nearby sediments or though dietary exposure. In this study, we analyzed certain physiological traits in unexposed fish (F1) issued from parents (F0) exposed through diet to three PAH mixtures at similar and environmentally relevant concentrations but differing in their compositions. For each mixture, no morphological differences were observed between concentrations. An increase in locomotor activity was observed in larvae issued from fish exposed to the highest concentration of a pyrolytic (PY) mixture. On the contrary, a decrease in locomotor activity was observed in larvae issued from heavy oil mixture (HO). In the case of the third mixture, light oil (LO), a reduction of the diurnal activity was observed during the setup of larval activity. Behavioral disruptions persisted in F1-PY juveniles and in their offspring (F2). Endocrine disruption was analyzed using cyp19a1b:GFP transgenic line and revealed disruptions in PY and LO offspring. Since no PAH metabolites were dosed in larvae, these findings suggest possible underlying mechanisms such as altered parental signaling molecule and/or hormone transferred in the gametes, eventually leading to early imprinting. Taken together, these results indicate that physiological disruptions are observed in offspring of fish exposed to PAH mixtures through diet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ali S, Champagne DL, Richardson MK (2012) Behavioral profiling of zebrafish embryos exposed to a panel of 60 water-soluble compounds. Behav Brain Res 228:272–283

    Article  CAS  Google Scholar 

  • Almeida JR, Gravato C, Guilhermino L (2012) Challenges in assessing the toxic effects of polycyclic aromatic hydrocarbons to marine organisms: a case study on the acute toxicity of pyrene to the European seabass (Dicentrarchus labrax L.). Chemosphere 86:926–937

    Article  CAS  Google Scholar 

  • Anway MD, Skinner MK (2006) Epigenetic transgenerational actions of endocrine disruptors. Endocrinology 147:S43–S49

    Article  CAS  Google Scholar 

  • Auperin B, Geslin M (2008) Plasma cortisol response to stress in juvenile rainbow trout is influenced by their life history during early development and by egg cortisol content. Gen Comp Endocrinol 158:234–239

    Article  CAS  Google Scholar 

  • Baker TR, Peterson RE, Heideman W (2014) Using zebrafish as a model system for studying the transgenerational effects of dioxin. Toxicol Sci 138:403–411

    Article  CAS  Google Scholar 

  • Baumard P, Budzinski H, Garrigues P, Sorbe JC, Burgeot T, Bellocq J (1998) Concentrations of PAHs (polycyclic aromatic hydrocarbons) in various marine organisms in relation to those in sediments and to trophic level. Mar Pollut Bull 36:951–960

    Article  CAS  Google Scholar 

  • Benlahcen KT, Chaoui A, Budzinski H, Bellocq J, Garrigues P (1997) Distribution and sources of polycyclic aromatic hydrocarbons in some Mediterranean coastal sediments. Mar Pollut Bull 34:298–305

    Article  CAS  Google Scholar 

  • Billiard SM, Hahn ME, Franks DG, Peterson RE, Bols NC, Hodson PV (2002) Binding of polycyclic aromatic hydrocarbons (PAHs) to teleost aryl hydrocarbon receptors (AHRs). Comp Biochem Physiol B Biochem Mol Biol 133:55–68

    Article  Google Scholar 

  • Bodiguel X, Loizeau V, Le Guellec AM, Roupsard F, Philippon X, Mellon-Duval C (2009) Influence of sex, maturity and reproduction on PCB and p, p'DDE concentrations and repartitions in the European hake (Merluccius merluccius, L.) from the Gulf of Lions (N.W. Mediterranean). Sci Total Environ 408:304–311

    Article  CAS  Google Scholar 

  • Boix J, Cauli O, Leslie H, Felipo V (2011): Differential long-term effects of developmental exposure to polychlorinated biphenyls 52, 138 or 180 on motor activity and neurotransmission. Gender dependence and mechanisms involved. Neurochem Int 58, 69–77

  • Brion F, Le Page Y, Piccini B, Cardoso O, Tong S-K, B-c C, Kah O (2012) Screening estrogenic activities of chemicals or mixtures in vivo using transgenic (cyp19a1b-GFP) zebrafish embryos. PLoS ONE 7:e36069

    Article  CAS  Google Scholar 

  • Budzinski H, Jones I, Bellocq J, Piérard C, Garrigues P (1997) Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary. Mar Chem 58:85–97

    Article  CAS  Google Scholar 

  • Burgess HA, Granato M (2007) Modulation of locomotor activity in larval zebrafish during light adaptation. J Exp Biol 210:2526–2539

    Article  Google Scholar 

  • Cachat J et al (2010) Modeling withdrawal syndrome in zebrafish. Behav Brain Res 208:371–376

    Article  CAS  Google Scholar 

  • Cachot J, Geffard O, Augagneur S, Lacroix S, Le Menach K, Peluhet L, Couteau J, Denier X, Devier MH, Pottier D, Budzinski H (2006) Evidence of genotoxicity related to high PAH content of sediments in the upper part of the Seine estuary (Normandy, France). Aquat Toxicol 79:257–267

    Article  CAS  Google Scholar 

  • Cailleaud K, Forget-Leray J, Souissi S, Hilde D, LeMenach K, Budzinski H (2007) Seasonal variations of hydrophobic organic contaminant concentrations in the water-column of the Seine Estuary and their transfer to a planktonic species Eurytemora affinis (Calanoida, copepoda). Part 1: PCBs and PAHs. Chemosphere 70:270–280

    Article  CAS  Google Scholar 

  • Corrales J, Fang X, Thornton C, Mei W, Barbazuk WB, Duke M, Scheffler BE, Willett KL (2014) Effects on specific promoter DNA methylation in zebrafish embryos and larvae following benzo[a]pyrene exposure. Comp Biochem Physiol C Toxicol Pharmacol 163:37–46

    Article  CAS  Google Scholar 

  • Correia AD, Gonçalves R, Scholze M, Ferreira M, Henriques MA-R (2007) Biochemical and behavioral responses in gilthead seabream (Sparus aurata) to phenanthrene. J Exp Mar Biol Ecol 347:109–122

    Article  CAS  Google Scholar 

  • Crépeaux G, Bouillaud-Kremarik P, Sikhayeva N, Rychen G, Soulimani R, Schroeder H (2012) Late effects of a perinatal exposure to a 16 PAH mixture: increase of anxiety-related behaviours and decrease of regional brain metabolism in adult male rats. Toxicol Lett 211:105–113

    Article  Google Scholar 

  • Crépeaux G, Bouillaud-Kremarik P, Sikhayeva N, Rychen G, Soulimani R, Schroeder H (2013) Exclusive prenatal exposure to a 16 PAH mixture does not impact anxiety-related behaviours and regional brain metabolism in adult male rats: a role for the period of exposure in the modulation of PAH neurotoxicity. Toxicol Lett 221:40–46

    Article  Google Scholar 

  • Daouk T, Larcher T, Roupsard F, Lyphout L, Rigaud C, Ledevin M, Loizeau V, Cousin X (2011) Long-term food-exposure of zebrafish to PCB mixtures mimicking some environmental situations induces ovary pathology and impairs reproduction ability. Aquat Toxicol 105:270–278

    Article  CAS  Google Scholar 

  • Edwards SC, Jedrychowski W, Butscher M, Camann D, Kieltyka A, Mroz E, Flak E, Li Z, Wang S, Rauh V, Perera F (2010) Prenatal exposure to airborne polycyclic aromatic hydrocarbons and children's intelligence at 5 years of age in a prospective cohort study in Poland. Environ Health Perspect 118:1326–1331

    Article  CAS  Google Scholar 

  • Egan RJ, Bergner CL, Hart PC, Cachat JM, Canavello PR, Elegante MF, Elkhayat SI, Bartels BK, Tien AK, Tien DH, Mohnot S, Beeson E, Glasgow E, Amri H, Zukowska Z, Kalueff AV (2009) Understanding behavioral and physiological phenotypes of stress and anxiety in zebrafish. Behav Brain Res 205:38–44

    Article  CAS  Google Scholar 

  • Eisler R (1987) Polycylic aromatic hydrocarbons hazards to fish, wildlife, and invertebrates: a synoptic review. U.S. Fish and Wildlife Service, Washington, DC. Biol Rep 85:1–11

    Google Scholar 

  • Emran F, Rihel J, Dowling JE (2008) A behavioral assay to measure responsiveness of zebrafish to changes in light intensities. J Vis Exp: JoVE, e293

  • Fang X, Thornton C, Scheffler BE, Willett KL (2013) Benzo[a]pyrene decreases global and gene specific DNA methylation during zebrafish development. Environ Toxicol Pharmacol 36:40–50

    Article  CAS  Google Scholar 

  • Gesto M, Soengas JL, Miguez JM (2008) Acute and prolonged stress responses of brain monoaminergic activity and plasma cortisol levels in rainbow trout are modified by PAHs (naphthalene, betanaphthoflavone and benzo(a)pyrene) treatment. Aquat Toxicol 86: 341–351

  • Gesto M, Tintos A, Soengas JL,Miguez JM (2009) beta-Naphthoflavone and benzo(a)pyrene alter dopaminergic, noradrenergic, and serotonergic systems in brain and pituitary of rainbow trout (Oncorhynchus mykiss). Ecotoxicol Environ Saf 72:191–98

  • Goncalves R, Scholze M, Ferreira AM, Martins M, Correia AD (2008) The joint effect of polycyclic aromatic hydrocarbons on fish behavior. Environ Res 108:205–213

    Article  CAS  Google Scholar 

  • Gravato C, Guilhermino L (2009) Effects of Benzo(a)pyrene on seabass (Dicentrarchus labrax L.): biomarkers, growth and behavior. Hum Ecol Risk Assess Int J 15:121–137

    Article  CAS  Google Scholar 

  • He J, Yang D, Wang C, Liu W, Liao J, Xu T, Bai C, Chen J, Lin K, Huang C, Dong Q (2011) Chronic zebrafish low dose decabrominated diphenyl ether (BDE-209) exposure affected parental gonad development and locomotion in F1 offspring. Ecotoxicology 20:1813–1822

    Article  CAS  Google Scholar 

  • Jeanneret H, Chantereau S, Belliaeff B, Ratiskol G, Allenou J-P, Piclet G (2002) Suivi sanitaire et environnemental des conséquences de la marée noire de l’Erika. In: Cedre (Hrsg.), Colloque SAFERSEAS: les leçons techniques de l’Erika et des autres accidents, Brest

  • Jedrychowski W, Whyatt RM, Camann DE, Bawle UV, Peki K, Spengler JD, Dumyahn TS, Penar A, Perera FF (2003) Effect of prenatal PAH exposure on birth outcomes and neurocognitive development in a cohort of newborns in Poland. Study design and preliminary ambient data. Int J Occup Med Environ Health 16:21–29

    Google Scholar 

  • Johnson LL, Ylitalo GM, Arkoosh MR, Kagley AN, Stafford C, Bolton JL, Buzitis J, Anulacion BF, Collier TK (2007) Contaminant exposure in outmigrant juvenile salmon from Pacific Northwest estuaries of the United States. Environ Monit Assess 124:167–194

    Article  CAS  Google Scholar 

  • Lange A, Paull GC, Coe TS, Katsu Y, Urushitani H, Iguchi T, Tyler CR (2009) Sexual reprogramming and estrogenic sensitization in wild fish exposed to ethinylestradiol. Environ Sci Technol 43:1219–1225

    Article  CAS  Google Scholar 

  • Larcher T, Perrichon P, Vignet C, Ledevin M, Le Menach K, Lyphout L, Landi L, Clerandeau C, Lebihanic F, Menard D, Burgeot T, Budzinski H, Akcha F, Cachot J, Cousin X (2014) Chronic dietary exposure of zebrafish to PAH mixtures results in carcinogenic but not genotoxic effects. Environ Sci Pollut Res Int

  • Latimer JS, Zheng J (2003) The sources, transport, and fate of PAHs in the marine environment, PAHs: an ecotoxicological perspective. Wiley, pp. 7–33

  • Le Bihanic F, Clerandeau C, Le Menach K, Morin B, Budzinski H, Cousin X, Cachot J (2014a) Developmental toxicity of PAH mixtures in fish early life stages. Part II: adverse effects in Japanese medaka. Environ Sci Pollut Res Int

  • Le Bihanic F, Morin B, Cousin X, Le Menach K, Budzinski H, Cachot J (2014b) Developmental toxicity of PAH mixtures in fish early life stages. Part I: adverse effects in rainbow trout. Environ Sci Pollut Res Int

  • Le Goff J, Gallois J, Pelhuet L, Devier MH, Budzinski H, Pottier D, André V, Cachot J (2006) DNA adduct measurements in zebra mussels, Dreissena polymorpha, Pallas: potential use for genotoxicant biomonitoring of fresh water ecosystems. Aquat Toxicol 79:55–64

    Article  Google Scholar 

  • Letcher RJ, Bustnes JO, Dietz R, Jenssen BM, Jørgensen EH, Sonne C, Verreault J, Vijayan MM, Gabrielsen GW (2010) Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Sci Total Environ 408:2995–3043

    Article  CAS  Google Scholar 

  • Levin ED, Bencan Z, Cerutti DT (2007) Anxiolytic effects of nicotine in zebrafish. Physiol Behav 90:54–58

    Article  CAS  Google Scholar 

  • Lucas J, Perrichon P, Nouhaud M, Audras A, Leguen I, Lefrancois C (2014) Aerobic metabolism and cardiac activity in the descendants of zebrafish exposed to pyrolytic polycyclic aromatic hydrocarbons. Environ Sci Pollut Res Int

  • MacPhail RC, Brooks J, Hunter DL, Padnos B, Irons TD, Padilla S (2009) Locomotion in larval zebrafish: influence of time of day, lighting and ethanol. NeuroToxicology 30:52–58

    Article  CAS  Google Scholar 

  • Mattingly CJ, Toscano WA (2001) Posttranscriptional silencing of cytochrome P4501A1 (CYP1A1) during zebrafish (Danio rerio) development. Dev Dyn 222:645–654

    Article  CAS  Google Scholar 

  • McCormick SD, Shrimpton JM, Carey JB, O'Dea MF, Sloan KE, Moriyama S, Björnsson BT (1998) Repeated acute stress reduces growth rate of Atlantic salmon parr and alters plasma levels of growth hormone, insulin-like growth factor I and cortisol. Aquaculture 168:221–235

    Article  CAS  Google Scholar 

  • Mirbahai L, Williams TD, Zhan H, Gong Z, Chipman JK (2011) Comprehensive profiling of zebrafish hepatic proximal promoter CpG island methylation and its modification during chemical carcinogenesis. BMC Genomics 12:3

    Article  CAS  Google Scholar 

  • Monteverdi GH, Giulio RTD (2000) In vitro and in vivo association of 2,3,7,8-tetrachlorodibenzo-p-dioxin and benzo[a]pyrene with the yolk-precursor protein vitellogenin. Environ Toxicol Chem 19:2502–2511

    Article  CAS  Google Scholar 

  • Neff JM (1979) Polycyclic aromatic hydrocarbons in the aquatic environment sources, fates, and biological effects. Applied Science Publishers, London

    Google Scholar 

  • Nüsslein-Volhard C, Dahm R (2002) Zebrafish: a pratical approach. The Pratical Approach Series, Oxford University Press 261, 8–37

  • Oliveira M, Gravato C, Guilhermino L (2012) Acute toxic effects of pyrene on Pomatoschistus microps (Teleostei, Gobiidae): mortality, biomarkers and swimming performance. Ecol Indic 19:206–214

    Article  CAS  Google Scholar 

  • Ottinger MA, Lavoie ET, Abdelnabi M, Quinn MJ Jr, Marcell A, Dean K (2009) An overview of dioxin-like compounds, PCB, and pesticide exposures associated with sexual differentiation of neuroendocrine systems, fluctuating asymmetry, and behavioral effects in birds. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev 27:286–300

    Article  CAS  Google Scholar 

  • Ottinger MA, Carro T, Bohannon M, Lf B, Marcell AM, McKernan M, Dean KM, Lavoie E, Abdelnabi M (2013) Assessing effects of environmental chemicals on neuroendocrine systems: potential mechanisms and functional outcomes. Gen Comp Endocrinol 190:194–202

    Article  CAS  Google Scholar 

  • Palanza P, Gioiosa L, vom Saal FS, Parmigiani S (2008) Effects of developmental exposure to bisphenol A on brain and behavior in mice. Environ Res 108:150–157

    Article  CAS  Google Scholar 

  • Panzica GC, Viglietti-Panzica C, Mura E, Quinn MJ Jr, Lavoie E, Palanza P, Ottinger MA (2007) Effects of xenoestrogens on the differentiation of behaviorally-relevant neural circuits. Front Neuroendocrinol 28:179–200

    Article  CAS  Google Scholar 

  • Payne JR, Driskell WB, Short JW, Larsen ML (2008) Long term monitoring for oil in the Exxon Valdez spill region. Mar Pollut Bull 56:2067–2081

    Article  CAS  Google Scholar 

  • Pean S, Daouk T, Vignet C, Lyphout L, Leguay D, Loizeau V, Begout ML, Cousin X (2013) Long-term dietary-exposure to non-coplanar PCBs induces behavioral disruptions in adult zebrafish and their offspring. Neurotoxicol Teratol 39:45–56

    Article  CAS  Google Scholar 

  • Pelletier MC, Burgess RM, Cantwell MG, Serbst JR, Ho KT, Ryba SA (2000) Importance of maternal transfer of the photoreactive polycyclic aromatic hydrocarbon fluoranthene from benthic adult bivalves to their pelagic larvae. Environ Toxicol Chem 19:2691–2698

    Article  CAS  Google Scholar 

  • Pereira MG, Walker LA, Wright J, Best J, Shore RF (2009) Concentrations of polycyclic aromatic hydrocarbons (PAHs) in the eggs of predatory birds in Britain. Environ Sci Technol 43:9010–9015

    Article  CAS  Google Scholar 

  • Perera FP, Tang D, Wang S, Vishnevetsky J, Zhang B, Diaz D, Camann D, Rauh V (2012) Prenatal polycyclic aromatic hydrocarbon (PAH) exposure and child behavior at age 6-7 years. Environ Health Perspect 120:921–926

    Article  CAS  Google Scholar 

  • Perrichon P (2014) Développement de tests embryo-larvaires prédictifs d’effets toxiques précoces et tardifs pour des molécules hydrophobe, La Rochelle, 300 pp

  • Reyhanian N, Volkova K, Hallgren S, Bollner T, Olsson PE, Olsen H, Hallstrom IP (2011) 17alpha-Ethinyl estradiol affects anxiety and shoaling behavior in adult male zebra fish (Danio rerio). Aquat Toxicol 105:41–48

    Article  CAS  Google Scholar 

  • Sackerman J, Donegan JJ, Cunningham CS, Nguyen NN, Lawless K, Long A, Benno RH, Gould GG (2010) Zebrafish behavior in novel environments: effects of acute exposure to anxiolytic compounds and choice of Danio rerio line. Int J Comp Psychol 23:43–61

    Google Scholar 

  • Sagiv SK, Thurston SW, Bellinger DC, Tolbert PE, Altshul LM, Korrick SA (2010) Prenatal organochlorine exposure and behaviors associated with attention deficit hyperactivity disorder in school-aged children. Am J Epidemiol 171:593–601

    Article  Google Scholar 

  • Schnorr SJ, Steenbergen PJ, Richardson MK, Champagne DL (2012) Measuring thigmotaxis in larval zebrafish. Behav Brain Res 228:367–374

    Article  CAS  Google Scholar 

  • Scott GR, Sloman KA (2004) The effects of environmental pollutants on complex fish behaviour: integrating behavioural and physiological indicators of toxicity. Aquat Toxicol 68:369–392

    Article  CAS  Google Scholar 

  • Shen H, Huang Y, Wang R, Zhu D, Li W, Shen G, Wang B, Zhang Y, Chen Y, Lu Y, Chen H, Li T, Sun K, Li B, Liu W, Liu J, Tao S (2013) Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ Sci Technol 47:6415–6424

    Google Scholar 

  • Steenbergen PJ, Richardson MK, Champagne DL (2011) The use of the zebrafish model in stress research. Prog Neuropsychopharmacol Biol Psychiatry 35:1432–1451

    Article  Google Scholar 

  • Stewart P, Reihman J, Lonky E, Darvill T, Pagano J (2000) Prenatal PCB exposure and neonatal behavioral assessment scale (NBAS) performance. Neurotoxicol Teratol 22:21–29

    Article  CAS  Google Scholar 

  • Stocco C (2012) Tissue physiology and pathology of aromatase. Steroids 77:27–35

    Article  CAS  Google Scholar 

  • Tang D, Li TY, Liu JJ, Zhou ZJ, Yuan T, Chen YH, Rauh VA, Xie J, Perera F (2008) Effects of prenatal exposure to coal-burning pollutants on children's development in China. Environ Health Perspect 116:674–679

    Article  Google Scholar 

  • Tilghman Hall A, Oris JT (1991) Anthracene reduces reproductive potential is maternally transferred during long-term exposure in fathead minnows. Aquat Toxicol 19:249–264

    Article  Google Scholar 

  • Tong SK, Mouriec K, Kuo MW, Pellegrini E, Gueguen MM, Brion F, Kah O, Chung BC (2009) A cyp19a1b-gfp (aromatase B) transgenic zebrafish line that expresses GFP in radial glial cells. Genesis 47:67–73

    Article  CAS  Google Scholar 

  • Varanasi U, Casillas E, Arkoosh MR, Hom T, Misitano D, Brown DW, Chan S-L, Collier TK, McCain BB, Stein JE (1993) Contaminant exposure and associated biological effects in juvenile Chinook salmon (Oncorhynchus tshawytscha) from urban and nonurban estuaries of Puget Sound, WA NOAA Fisheries

  • Vignet C (2014) Altération de la physiologie des poissons exposés à des hydrocarbures aromatiques polycycliques (HAP) Comportement et reproduction, La Rochelle, 350 pp

  • Vignet C, Bégout M-L, Péan S, Lyphout L, Leguay D, Cousin X (2013) Systematic screening of behavioral responses in two zebrafish strains. Zebrafish 10:365–375

    Article  Google Scholar 

  • Vignet C, Devier MH, Le Menach K, Lyphout L, Potier J, Cachot J, Budzinski H, Begout ML, Cousin X (2014a) Long-term disruption of growth, reproduction, and behavior after embryonic exposure of zebrafish to PAH-spiked sediment. Environ Sci Pollut Res Int

  • Vignet C, Le Menach K, Lyphout L, Guionnet T, Frere L, Leguay D, Budzinski H, Cousin X, Begout ML (2014b) Chronic dietary exposure to pyrolytic and petrogenic mixtures of PAHs causes physiological disruption in zebrafish-part II: behavior. Environ Sci Pollut Res Int

  • Vignet C, Le Menach K, Mazurais D, Lucas J, Perrichon P, Le Bihanic F, Devier MH, Lyphout L, Frere L, Begout ML, Zambonino-Infante JL, Budzinski H, Cousin X (2014c) Chronic dietary exposure to pyrolytic and petrogenic mixtures of PAHs causes physiological disruption in zebrafish—part I: Survival and growth. Environ Sci Pollut Res Int

  • Volkova K, Reyhanian N, Kot-Wasik A, Olsen H, Porsch-Hallstrom I, Hallgren S (2012) Brain circuit imprints of developmental 17alpha-Ethinylestradiol exposure in guppies (Poecilia reticulata): persistent effects on anxiety but not on reproductive behaviour. Gen Comp Endocrinol 178:282–290

    Article  CAS  Google Scholar 

  • Wormley DD, Ramesh A, Hood DB (2004) Environmental contaminant—mixture effects on CNS development, plasticity, and behavior. Toxicol Appl Pharmacol 197:49–65

    Article  CAS  Google Scholar 

  • Yanagida GK, Anulacion BF, Bolton JL, Boyd D, Lomax DP, Paul Olson O, Sol SY, Willis M, Ylitalo GM, Johnson LL (2012) Polycyclic aromatic hydrocarbons and risk to threatened and endangered Chinook salmon in the Lower Columbia River estuary. Arch Environ Contam Toxicol 62:282–295

    Article  CAS  Google Scholar 

  • Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33:489–515

    Article  CAS  Google Scholar 

  • Zhang Y, Tao S (2009) Global atmospheric emission inventory of polycyclic aromatic hydrocarbons (PAHs) for 2004. Atmos Environ 43:812–819

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Laura Frere, Cathy Haget, and Didier Leguay for their help. This study was supported financially by the ANR project ConPhyPoP (CES 09_002) and CPER A2E. This later project is co-financed by the European Union with the European fund of regional development. A doctoral grant was received from the Région Poitou-Charentes and from l’Institut Français de Recherche pour l’Exploitation de la Mer (C.V.). This work was part of the LABEX COTE cluster of excellence "Continental to coastal ecosystems."

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Cousin.

Additional information

Responsible editor: Cinta Porte

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 30 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignet, C., Joassard, L., Lyphout, L. et al. Exposures of zebrafish through diet to three environmentally relevant mixtures of PAHs produce behavioral disruptions in unexposed F1 and F2 descendant. Environ Sci Pollut Res 22, 16371–16383 (2015). https://doi.org/10.1007/s11356-015-4157-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4157-8

Keywords

Navigation