Skip to main content
Log in

Photolysis degradation of polyaromatic hydrocarbons (PAHs) on surface sandy soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are potent environmental pollutants, and some of them have been identified as carcinogenic and mutagenic. To advance the knowledge of the environmental fate of PAHs, we systematically investigated the influence of different UV wavelengths irradiation on photolysis of PAHs on sandy soil under tow wavelengths (254 and 306 nm) UV irradiation for six PAHs. In addition, kinetic model and influence of several parameters on PAHs photolysis have been studied. The results obtained indicated that UV radiation with a wavelength of 306 nm was more efficient in the photolysis of the polycyclic aromatic hydrocarbons. Our results showed that fluoranthene (Flt) was the fastest in decomposition, has the greatest value for the coefficient of photolysis (7.4 × 10−3 h−1), and has less half-life, reaching 94 h when using a wavelength of 254 nm. The results indicated that the pyrene (Pyr) was more resistant to photolysis in comparison with indeno(1,2,3-cd) pyrene (IP) and fluoranthene (Flt). The results indicate that photolysis is a successful way to remediate the six studied PAHs compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig 5
Fig 6
Map 1

Similar content being viewed by others

References

  • Adham KG, Al-Eisa NA, Farhood MH (2011) Risk assessment of heavy metal contamination in soil and wild libyan jird, Meriones libycus in Riyadh, Saudi Arabia. J Environ Biol 32:813–819

    CAS  Google Scholar 

  • Alexandrou N, Smith M, Park R, Lumb K, Brice K (2001) The extraction of polycyclic aromatic hydrocarbons from atmospheric particulate matter samples by accelerated solvent extraction (ASE). Int J Environ Anal Chem 81(4):257–280

    Article  CAS  Google Scholar 

  • An YJ, Carraway ER (2002) PAH degradation by UV/H2O2 in perfluorinated surfactant solutions. Water Res 36(1):309–314

    Article  CAS  Google Scholar 

  • Balmer ME, Gos KU, Schwarzenbach RP (2000) Photolytic transformation of organic pollutants on soil surfaces: an experimental approach. Environ Sci Technol 34(7):1240–1245

    Article  CAS  Google Scholar 

  • Barreca S, Mazzola A, Orecchio S, Tuzzolino N (2014) Polychlorinated biphenyls in sediments from Sicilian coastal area (scoglitti) using automated soxhlet, GC-MS, and principal component analysis. Polycycl Aromat Compd 34:237–262

    Article  CAS  Google Scholar 

  • Bo ZHAO, Yuqing LI, Sukun ZHANG, Jinglei HAN, Zhencheng XU, Jiande FANG (2014) Analysis of polycyclic aromatic hydrocarbons in air samples by gas chromatography-triple quadrupole mass spectrometry. Chin J Chromatogr 32(9):960–966

    Google Scholar 

  • Chengbin X, Dong D, Meng X, Xin Su X, Zheng YL (2013) Photolysis of polycyclic aromatic hydrocarbons on soil surfaces under UV irradiation. J Environ Sci 25(3):569–575

    Article  Google Scholar 

  • David B, Boule P (1993) Phototransformation of hydrophobic pollutants in aqueous medium I-PAHs adsorbed on silica. Chemosphere 26(9):1617–1630

    Article  CAS  Google Scholar 

  • Ding J, Cong J, Zhou J, Gao SX (2008) Polycyclic aromatic hydrocarbon biodegradation and extracellular enzyme secretion in agitated and stationary cultures of Phanerochaete chrysosporium. J Environ Sci 20(1):88–93

    Article  CAS  Google Scholar 

  • Dong DB, Li PJ, Li XJ, Xu CB, Gong DW, Zhang YQ (2010a) Photocatalytic degradation of phenanthrene and pyrene on soil surfaces in the presence of nanometer rutile TiO2 under UV irradiation. Chem Eng J 158(3):378–383

    Article  CAS  Google Scholar 

  • Dong DB, Li PJ, Li XJ, Zhao Q, Zhang YQ, Jia CY et al (2010b) Investigation on the photocatalytic degradation of pyrene on soil surfaces using nanometer anatase TiO2 under UV irradiation. J Hazard Mater 174(1–3):859–863

    Article  CAS  Google Scholar 

  • Dong C-D, Chen C-F, Chen C-W (2012) Determination of polycyclic aromatic hydrocarbons in industrial harbor sediments by GC-MS. Int J Environ Res Public Health 9:2175–2188

    Article  CAS  Google Scholar 

  • El-Mubarak AH, Rushdi AI, Al-Mutlaq KF, Bazeyad AY, Simonich SL, Simoneit BR (2014) Identification and source apportionment of polycyclic aromatic hydrocarbons in ambient air particulate matter of Riyadh, Saudi Arabia. Environ Sci Pollut Res Int 21(1):558–67

    Article  CAS  Google Scholar 

  • González-Pérez JA, Almendros G, González-Vila FJ (2014) Appraisal of polycyclic aromatic hydrocarbons (PAHs) in environmental matrices by analytical pyrolysis (GC/MS). J Anal Appl Pyrolysis 109:1–8

    Article  Google Scholar 

  • Gu Z, Feng JL, Han WL, Li L, Wu MH, Fu JM et al (2010) Diurnal variations of polycyclic aromatic hydrocarbons associated with PM2.5 in Shanghai, China. J Environ Sci 22(3):389–396

    Article  CAS  Google Scholar 

  • He FP, Zhang ZH, Wan YY, Lu S, Wang L, Bu QW (2009) Polycyclic aromatic hydrocarbons in soils of Beijing and Tianjin region: vertical distribution, correlation with TOC and transport mechanism. J Environ Sci 21(5):675–685

    Article  CAS  Google Scholar 

  • Higarashi MM, Jardim WF (2002) Remediation of pesticide contaminated soil using Ti02 mediated by solar light. Catal Today 76:201–207

    Article  CAS  Google Scholar 

  • Hossner LR (1996) Dissolution for total elemental analysis. In Methods of Soils Analysis. Part 3. Chemical Methods; Sparks DL, (Ed.), Soil Society of American: Madison, WI, 49-64

  • Irland JC, D’avila B, Moreno H, Fink SK, Tassos S (1995) Heterogeneous photocatalytic decomposition of polyaromatic hydrocarbons over titanium dioxide. Chemosphere 30:965–984

    Article  Google Scholar 

  • Jia H, Li L, Fan X, Liu M, Deng W, Wang C (2013) Visible light photodegradation of phenanthrene catalyzed by Fe(III)-smectite: role of soil organic matter. J Hazard Mater 256-257:16–23

    Article  CAS  Google Scholar 

  • Jian L, Senlin T, Yanhua N, Guang L, Ping N (2014) Reversible solubilization of typical polycyclic aromatic hydrocarbons by a photoresponsive surfactant. Colloids Surf A Physicochem Eng Asp 454:172–179

    Article  Google Scholar 

  • Jones KC, Stratford JA, Tridridge P et al (1989a) Polynuclear aromatic hydrocarbons in an agricultural soil: long-term changes in profile distribution. Environ Pollut 56:337351

    Article  Google Scholar 

  • Jones KC, Stratford JA, Waterhouse KS et al (1989b) Increases in the polynuclear aromatic hydrocarbons content of an agricultural soil over the last century. Environ Sci Technol 23:95–101

    Article  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a] pyene. Int Biodeterio Biodegra 45:57–88

    Article  CAS  Google Scholar 

  • Kalf DF, Crommentuijn T, Van de Plassche EJ (1997) Environmental quality objectives for 10 polycyclic aromatic hydrocarbons. Ecotoxicol Environ Saf 36:89–97

    Article  CAS  Google Scholar 

  • Karaca G, Tasdemir Y (2013a) Removal of polycyclic aromatic hydrocarbons (PAHs) from industrial sludges in the ambient air conditions: automotive industry. J Environ Sci Health, Part A: Toxic/Hazard Subst Environ Eng 48:855–861

    Article  CAS  Google Scholar 

  • Karaca G, Tasdemir Y (2013b) Effects of temperature and photocatalysts on removal of polycyclic aromatic hydrocarbons (PAHs) from automotive industry sludge. Polycycl Aromat Compd 33:380–395

    Article  CAS  Google Scholar 

  • Karam FF, Hussein FH, Baqir SJ, Halbus AF, Dillert R, Bahnemann D (2014) Photocatalytic degradation of anthracene in closed system reactor. Int J Photoenergy 2014:1–6

    Article  Google Scholar 

  • Kefi BB, Atrache LLE, Kochkar H, Ghorbel A (2011) TiO2 nanotubes as solid-phase extraction adsorbent for the determination of polycyclic aromatic hydrocarbons in environmental water samples. J Environ Sci 23(5):860–867

    Article  CAS  Google Scholar 

  • Kot-Wasik A, Dabrowska D, Namiesnik J (2004) Photodegradation and biodegradation study of benzo[a]pyrene in different liquid media. J Photochem Photobiol A Chem 168:109–115

    Article  CAS  Google Scholar 

  • Kraleva E, Karamfilov V, Hibaum G (2012) Determination of PAH in the black sea water by gc/ms following preconcentration with solid-phase extraction. Ecol Chem Eng S 19(3):393–403

    CAS  Google Scholar 

  • Lehto K-M, Vuorimaa E, Lemmetyinen H (2000) Photolysis of polycyclic aromatic hydrocarbons (PAHs) in dilute aqueous solutions detected by fluorescence. J Photochem Photobiol A Chem 136:53–60

    Article  CAS  Google Scholar 

  • Leite NF, Peralta-Zamora P, Grassi MT (2011) Distribution and origin of polycyclic aromatic hydrocarbons in surface sediments from an urban river basin at the Metropolitan region of Curitiba, Brazil. J Environ Sci 23(6):904–911

    Article  CAS  Google Scholar 

  • Li J, Lu YL, Shi YJ, Wang TY, Wang G, Luo W et al (2011) Environmental pollution by persistent toxic substances and health risk in an industrial area of China. J Environ Sci 23(8):1359–1367

    Article  CAS  Google Scholar 

  • Liu LB, Liu Y, Lin JM, Tang N, Hayakawa K, Maeda T (2007) Development of analytical methods for polycyclic aromatic hydrocarbons (PAHs) in airborne particulates: a review. J Environ Sci 19(1):1–11

    Article  Google Scholar 

  • Ma J, Zhou YZ (2011) Soil pollution by polycyclic aromatic hydrocarbons: a comparison of two Chinese cities. J Environ Sci 23(9):1518–1523

    Article  CAS  Google Scholar 

  • Mannino MR, Orecchio S (2008) Polycyclic aromatic hydrocarbons (PAHs) in indoor dust matter of Palermo (Italy) area: extraction, GC–MS analysis, distribution and sources. Atmos Environ 42(8):1801–1817

    Article  CAS  Google Scholar 

  • Miller JS, Olejnik D (2001) Photolysis of polycyclic aromatic hydrocarbons in water. Water Res 35(1):233–243

    Article  CAS  Google Scholar 

  • Na GS, Liu CY, Wang Z, Ge LK, Ma XD, Yao ZW (2011) Distribution and characteristic of PAHs in snow of Fildes Peninsula. J Environ Sci 23(9):1445–1451

    Article  CAS  Google Scholar 

  • Niu JF, Sun P, Schramm KW (2007) Photolysis of polycyclic aromatic hydrocarbons associated with fly ash particles under simulated sunlight irradiation. J Photochem Photobiol A Chem 186(1):93–98

    Article  CAS  Google Scholar 

  • Rajput P, Sarin M, Rengarajan R (2011) High-precision GC-MS analysis of atmospheric polycyclic aromatic hydrocarbons (PAHs) and isomer ratios from biomass burning emissions. J Environ Prot 2:445–453

    Article  CAS  Google Scholar 

  • Ravindraa K, Sokhia R, Van Griekenb R (2008) Atmospheric polycyclic aromatic hydrocarbons: source attribution, emission factors and regulation. Atmos Environ 42:2895–2921

    Article  Google Scholar 

  • Reyes C, Sigman ME, Arce R, Barbas JT, Dabestani R (1998) Photochemistry of acenaphthene at a silica gel/air interface. J Photochem Photobiol A Chem 112(2–3):277–283

    Article  CAS  Google Scholar 

  • Rushdi AI, Al-Mutlaq K, El-Mubarak AH, El-Otaibi M (2013) Occurrence and sources of aliphatic hydrocarbons in surface soils from Riyadh city, Saudi Arabia. J Saudi Soc Agric Sci 12:9–18

    Google Scholar 

  • Sanches S, Leit˜ao C, Penetra A, Cardoso VV, Ferreira E, Benoliel MJ et al (2011) Direct photolysis of polycyclic aromatic hydrocarbons in drinking water sources. J Hazard Mater 192(3):1458–1465

    Article  CAS  Google Scholar 

  • Shang D, Kim M, Haberl M (2014) Rapid and sensitive method for the determination of polycyclicaromatic hydrocarbons in soils using pseudo multiple reaction monitoring gas chromatography/tandem mass spectrometry. J Chromatogr A 1334:118–125

    Article  CAS  Google Scholar 

  • Sigman ME, Zingg SP (1994) In: Helz, G.R., Zepp, R.G., Crosby, D.G. (Eds.), Aquatic and Surface Photochemistry. CRC Press, Boca Raton, FL, pp. 197–206

  • Sigman ME, Schuler PF, Ghosh MM, Dabestani RT (1998) Mechanism of pyrene photochemical oxidation in aqueous and surfactant solutions. Environ Sci Technol 32:3980–3985

    Article  CAS  Google Scholar 

  • Sotero P, Arce R (2008) Major products in the photochemistry of perylene adsorbed in models of atmospheric particulate matter. J Photochem Photobiol A Chem 199(1):14–22

    Article  CAS  Google Scholar 

  • Sun R, Jin JH, Sun GD, Liu Y, Liu ZP (2010) Screening and degrading characteristics and community structure of a high molecular weight polycyclic aromatic hydrocarbon-degrading bacterial consortium from contaminated soil. J Environ Sci 22(10):1576–1585

    Article  CAS  Google Scholar 

  • Wen S, Zhao JC, Sheng GY, Fu JM, Peng PA (2002) Photocatalytic reactions of phenanthrene at TiO2/water interfaces. Chemosphere 46:871–877

  • Zhang LH, Li PJ, Gong ZQ, Oni AA (2006) Photochemical behavior of benzo[a]pyrene on soil surfaces under UV light irradiation. J Environ Sci 18(6):1226–1232

    Article  CAS  Google Scholar 

  • Zhao X, Quan X, ZhaoY Z et al (2004) Photocatalytic remediation of γ-HCH contaminated soil induced by a-Fe and TiO. J Environ Sci 16:938–941

Download references

Acknowledgments

This study is a part of project number 11-ENV-2660-02 which have been supported by the National Strategic Technologies Program (NSTIP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed H. EL-Saeid.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

EL-Saeid, M.H., Al-Turki, A.M., Nadeem, M.E.A. et al. Photolysis degradation of polyaromatic hydrocarbons (PAHs) on surface sandy soil. Environ Sci Pollut Res 22, 9603–9616 (2015). https://doi.org/10.1007/s11356-015-4082-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-015-4082-x

Keywords

Navigation