Skip to main content
Log in

Recent advances in arsenic bioavailability, transport, and speciation in rice

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Widespread arsenic (As) contamination in paddy rice (Oryza sativa) from both geologic and anthropogenic origins is an increasing concern globally. Substantial efforts have been made to elucidate As transformation and uptake processes in rhizosphere and metabolism in rice plant, which provides an essential foundation for the development of mitigation strategies. However, a range of crucial mechanisms from As mobilization in rhizosphere to transport to grains remain poorly understood. To provide new insight into the underlying mechanisms of As accumulation in rice, a range of new perspectives on As bioavailability, transport pathways, and in situ speciation are reviewed here. Specifically, the prominent effects of water regime, Fe plaque, and biochar on As mobilization in rice rhizosphere are discussed critically. An updated understanding of arsenite (AsIII) and methylated As transport from root to vascular bundle and grain is integrated and discussed in detail. Special attention is given to As speciation and distribution in rice grain with potential coping strategies being provided and discussed. Future research priorities are also identified. The new insight into As bioavailability, transport and speciation in rice would lead to a better understanding of As contamination in rice. They would also provide useful strategies from agronomic measures to genetic engineering for more effective restriction of As transport and accumulation in food chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Bogdan K, Schenk MK (2008) Arsenic in rice (Oryza sativa L.) related to dynamics of arsenic and silicic acid in paddy soils. Environ Sci Technol 42:7885–7890

    Article  CAS  Google Scholar 

  • Buschmann J, Kappeler A, Lindauer U, Kistler D, Berg M, Sigg L (2006) Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminum. Environ Sci Technol 40:6015–6020

    Article  CAS  Google Scholar 

  • Butterbach-Bahl K, Papen H, Rennenberg H (2000) Scanning electron microscopy analysis of the aerenchyma in two rice cultivars. Phyton-Ann Rei Bot 40:43–55

    Google Scholar 

  • Carey AM, Scheckel KG, Lombi E, Newville M, Choi Y, Norton GJ, Charnock JM, Feldmann J, Meharg AA, Price AH (2010) Grain unloading of arsenic species in rice. Plant Physiol 152:309–319

    Article  CAS  Google Scholar 

  • Carey AM, Norton GJ, Deacon C, Scheckel KG, Lombi E, Punshon T, Guerinot ML, Lanzirotti A, Choi Y, Newville M, Meharg AA, Price AH (2011) Phloem transport of arsenic species from flag leaf to grain during grain filling. New Phytol 192:87–98

    Article  CAS  Google Scholar 

  • Chen Y, Hall M, Graziano JH, Slavkovich V, van Geen A, Parvez F, Ahsan H (2007) A prospective study of blood selenium levels and the risk of arsenic-related premalignant skin lesions. Cancer Epidemiol Biomarkers Prev 16:207–213

    Article  CAS  Google Scholar 

  • Chen X, Li H, Chan WF, Wu C, Wu F, Wu S, Wong MH (2012) Arsenite transporters expression in rice (Oryza sativa L.) associated with arbuscular mycorrhizal fungi (AMF) colonization under different levels of arsenite stress. Chemosphere 89:1248–1254

    Article  CAS  Google Scholar 

  • Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189

    Article  CAS  Google Scholar 

  • Duan G, Kamiya T, Ishikawa S, Fujiwara T, Arao T (2012) Expressing ScACR3 in rice enhanced arsenite efflux and reduced arsenic accumulation in rice grains. Plant Cell Physiol 53:154–163

    Article  CAS  Google Scholar 

  • Duan G, Liu W, Chen X, Hu Y, Zhu Y (2013) Association of arsenic with nutrient elements in rice plants. Metallomics 5:784–792

    Article  CAS  Google Scholar 

  • Dwivedi S, Tripathi RD, Tripathi P, Kumar A, Dave R, Mishra S, Singh R, Sharma D, Rai UN, Chakrabarty D, Trivedi PK, Adhikari B, Bag MK, Dhankher OP, Tuli R (2010a) Arsenate exposure affects amino acids, mineral nutrient status and antioxidants in rice (Oryza sativa L.) genotypes. Environ Sci Technol 44:9542–9549

    Article  CAS  Google Scholar 

  • Dwivedi S, Tripathi RD, Srivastava S, Singh R, Kumar A, Tripathi P, Dave R, Rai UN, Chakrabarty D, Trivedi PK, Tuli R, Adhikari B, Bag MK (2010b) Arsenic affects mineral nutrients in grains of various Indian rice (Oryza sativa L.) genotypes grown on arsenic-contaminated soils of West Bengal. Protoplasma 245:113–124

    Article  CAS  Google Scholar 

  • Fan JX, Wang YJ, Liu C, Wang LH, Yang K, Zhou DM, Li W, Sparks DL (2014) Effect of iron oxide reductive dissolution on the transformation and immobilization of arsenic in soils: new insights from X-ray photoelectron and X-ray absorption spectroscopy. J Hazard Mater 279:212–219

    Article  CAS  Google Scholar 

  • Fitz WJ, Wenzel WW, Zhang H, Nurmi J, Stipek K, Fischerova Z, Schweiger P, Köllensperger G, Ma LQ, Stingeder G (2003) Rhizosphere characteristics of the arsenic hyperaccumulator Pteris vittata L. and monitoring of phytoremoval efficiency. Environ Sci Technol 37:5008–5014

    Article  CAS  Google Scholar 

  • Fleck AT, Mattusch J, Schenk MK (2013) Silicon decreases the arsenic level in rice grain by limiting arsenite transport. J Plant Nutr Soil Sci 176:785–794

    CAS  Google Scholar 

  • Gailer J, George GN, Pickering IJ, Buttigieg GA, Denton MB, Glass RS (2002) Synthesis, X-ray absorption spectroscopy and purification of the seleno-bis (S-glutathionyl) arsinium anion from selenide, arsenite and glutathione. J Organomet Chem 650:108–113

    Article  CAS  Google Scholar 

  • Gilbert-Diamond D, Cottingham KL, Gruber JF, Punshon T, Sayarath V, Gandolfi AJ, Baker ER, Jackson BP, Folt CL, Karagas MR (2011) Rice consumption contributes to arsenic exposure in US women. Proc Natl Acad Sci 108:20656–20660

    Article  CAS  Google Scholar 

  • Heikens A, Panaullah GM, Meharg AA (2007) Arsenic behaviour from groundwater and soil to crops: impacts on agriculture and food safety. Rev Environ Contam Toxicol 189:43–87

    CAS  Google Scholar 

  • Hu Y, Duan GL, Huang YZ, Liu YX, Sun GX (2014) Interactive effects of different inorganic As and Se species on their uptake and translocation by rice (Oryza sativa L.) seedlings. Environ Sci Pollut Res 21:3955–3962

    Article  CAS  Google Scholar 

  • Huang Z, Pei Q, Sun G, Zhang S, Liang J, Gao Y, Zhang X (2008) Low selenium status affects arsenic exposed population with skin lesions. Clin Chim Acta 387:139–144

    Article  CAS  Google Scholar 

  • Huang JH, Fecher P, Ilgen G, Hu KN, Yang J (2012) Speciation of arsenite and arsenate in rice grain-verification of nitric acid based extraction method and mass sample survey. Food Chem 130:453–459

    Article  CAS  Google Scholar 

  • Jia Y, Huang H, Sun GX, Zhao FJ, Zhu YG (2012) Pathways and relative contributions to arsenic volatilization from rice plants and paddy soil. Environ Sci Technol 46:8090–8096

    Article  CAS  Google Scholar 

  • Jia Y, Huang H, Zhong M, Wang FH, Zhang LM, Zhu YG (2013) Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol 47:3141–3148

    CAS  Google Scholar 

  • Khan MA, Stroud JL, Zhu YG, McGrath SP, Zhao FJ (2010) Arsenic bioavailability to rice is elevated in Bangladeshi paddy soils. Environ Sci Technol 44:8515–8521

    Article  CAS  Google Scholar 

  • Kopittke PM, de Jonge MD, Wang P, McKenna B, Lombi E, Paterson D, Howard D, James S, Spiers K, Ryan C, Johnson AAT, Menzies NW (2014) Laterally resolved speciation of arsenic in roots of wheat and rice using fluorescence-XANES imaging. New Phytol 201:1251–1262

    Article  CAS  Google Scholar 

  • Kuramata M, Abe T, Akira K, Kaworu E, Taeko S, Masahiro Y, Satoru I (2013) Genetic diversity of arsenic accumulation in rice and QTL analysis of methylated arsenic in rice grains. Rice 6:1–10

    Article  Google Scholar 

  • Lee CH, Hsieh YC, Lin TH, Lee DY (2013) Iron plaque formation and its effect on arsenic uptake by different genotypes of paddy rice. Plant Soil 363:231–241

    Article  CAS  Google Scholar 

  • Li RY, Ago Y, Liu W, Mitani N, Feldmann J, McGrath SP, Ma JF, Zhao FJ (2009) The rice aquaporin Lsi1 mediates uptake of methylated arsenic species. Plant Physiol 150:2071–2080

    Article  CAS  Google Scholar 

  • Li J, Dong F, Lu Y, Yan Q, Shim H (2014) Mechanisms controlling arsenic uptake in rice grown in mining impacted regions in South China. PLoS ONE 9:e108300

    Article  Google Scholar 

  • Liu WJ, Zhu YG, Smith FA (2005) Effects of iron and manganese plaques on arsenic uptake by rice seedlings (Oryza sativa L.) grown in solution culture supplied with arsenate and arsenite. Plant Soil 277:127–138

    Article  CAS  Google Scholar 

  • Liu WJ, Zhu YG, Hu Y, Williams PN, Gault AG, Meharg AA, Charnock JM, Smith FA (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.). Environ Sci Technol 40:5730–5736

    Article  CAS  Google Scholar 

  • Liu WJ, McGrath SP, Zhao FJ (2014) Silicon has opposite effects on the accumulation of inorganic and methylated arsenic species in rice. Plant Soil 376:423–431

    Article  CAS  Google Scholar 

  • Lomax C, Liu WJ, Wu LY, Xue K, Xiong JB, Zhou JZ, McGrath SP, Meharg AA, Miller AJ (2012) Methylated arsenic species in plants originate from soil microorganisms. New Phytol 193:665–672

    Article  CAS  Google Scholar 

  • Lombi E, Scheckel KG, Pallon J, Carey AM, Meharg AA, Zhu YG (2009) Speciation and distribution of arsenic and localization of nutrients in rice grains. New Phytol 184:193–201

    Article  CAS  Google Scholar 

  • Lu Y, Dong F, Deacon C, Chen H, Raab A, Meharg AA (2010) Arsenic accumulation and phosphorus status in two rice (Oryza sativa L.) cultivars surveyed from fields in South China. Environ Pollut 158:1536–1541

  • Luo J, Zhang H, Santner J, Davison W (2010) Performance characteristics of diffusive gradients in thin films equipped with a binding gel layer containing precipitated ferrihydrite for measuring arsenic(V), selenium(VI), vanadium(V), and antimony(V). Anal Chem 82:8903–8909

    Article  CAS  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2006) A silicon transporter in rice. Nature 440:688–691

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448:209–212

    Article  CAS  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Xu XY, Su YH, McGrath SP, Zhao FJ (2008) Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proc Natl Acad Sci 105:9931–9935

    Article  CAS  Google Scholar 

  • Manyà JJ (2012) Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ Sci Technol 46:7939–7954

    Article  Google Scholar 

  • Marapakala K, Qin J, Rosen BP (2012) Identification of catalytic residues in the As(III) S-adenosylmethionine methyltransferase. Biochemistry 51:944–951

    Article  CAS  Google Scholar 

  • Marschner H (2003) Mineral nutrition of higher plants. Academic, New York

    Google Scholar 

  • Meharg AA (2004) Arsenic in rice—understanding a new disaster for South-East Asia. Trends Plant Sci 9:415–417

    Article  CAS  Google Scholar 

  • Meharg AA, Lombi E, Williams PN, Scheckel KG, Feldmann J, Raab A, Zhu YG, Islam R (2008) Speciation and localization of arsenic in white and brown rice grains. Environ Sci Technol 42:1051–1057

    Article  CAS  Google Scholar 

  • Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617

    Article  CAS  Google Scholar 

  • Mei XQ, Ye ZH, Wong MH (2009) The relationship of root porosity and radial oxygen loss on arsenic tolerance and uptake in rice grains and straw. Environ Pollut 157:2550–2557

    Article  CAS  Google Scholar 

  • Mei XQ, Wong MH, Yang Y, Dong HY, Qiu RL, Ye ZH (2012) The effects of radial oxygen loss on arsenic tolerance and uptake in rice and on its rhizosphere. Environ Pollut 165:109–117

    Article  CAS  Google Scholar 

  • Melkonian S, Argos M, Hall MN, Chen Y, Parvez F, Pierce B, Cao H, Aschebrook-Kilfo B, Ahmed A, Islam T, Slavcovich V, Gamble M, Haris PI, Graziano JH, Ahsan H (2013) Urinary and dietary analysis of 18,470 Bangladeshis reveal a correlation of rice consumption with arsenic exposure and toxicity. PLoS ONE 8:e80691

    Article  Google Scholar 

  • Miretzky P, Cirelli AF (2010) Remediation of arsenic-contaminated soils by iron amendments: a review. Crit Rev Env Sci Technol 40:93–115

    Article  CAS  Google Scholar 

  • Mitani-Ueno N, Yamaji N, Zhao FJ, Ma JF (2011) The aromatic/arginine selectivity filter of NIP aquaporins plays a critical role in substrate selectivity for silicon, boron, and arsenic. J Exp Bot 62:4391–4398

    Article  CAS  Google Scholar 

  • Moore KL, Schröder M, Wu Z, Martin BGH, Hawes CR, McGrath SP, Hawkesford MJ, Ma JF, Zhao FJ, Grovenor CRM (2011) High-resolution secondary ion mass spectrometry reveals the contrasting subcellular distribution of arsenic and silicon in rice roots. Plant Physiol 156:913–924

    Article  CAS  Google Scholar 

  • Mosa KA, Kumar K, Chhikara S, Mcdermott J, Liu Z, Musante C, White JC, Dhankher OP (2012) Members of rice plasma membrane intrinsic proteins subfamily are involved in arsenite permeability and tolerance in plants. Transgenic Res 21:1265–1277

    Article  CAS  Google Scholar 

  • Nakamura K, Katou H (2012) Arsenic and cadmium solubilization and immobilization in paddy soils in response to alternate submergence and drainage. In: Selim HM (ed) Competitive sorption and transport of heavy metals in soils and geological media. CRC Press, Boca Raton, pp 373–397

    Google Scholar 

  • Okkenhaug G, Zhu YG, He J, Li X, Luo L, Mulder J (2012) Antimony (Sb) and arsenic (As) in Sb mining impacted paddy soil from Xikuangshan, China: differences in mechanisms controlling soil sequestration and uptake in rice. Environ Sci Technol 46:3155–3162

    Article  CAS  Google Scholar 

  • Pan W, Wu C, Xue S, Hartley W (2014) Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation. J Environ Sci 26:892–899

    Article  CAS  Google Scholar 

  • Panther JG, Stillwell KP, Powell KJ, Downard AJ (2008) Development and application of the diffusive gradients in thin films technique for the measurement of total dissolved inorganic arsenic in waters. Anal Chim Acta 622:133–142

    Article  CAS  Google Scholar 

  • Rayman MP (2012) Selenium and human health. Lancet 379:1256–1268

    Article  CAS  Google Scholar 

  • Sahoo PK, Kim K (2013) A review of the arsenic concentration in paddy rice from the perspective of geoscience. Geosci J 17:107–122

    Article  CAS  Google Scholar 

  • Sahoo PK, Mukherjee A (2014) Arsenic fate and transport in the groundwater-soil-plant system: an understanding of suitable rice paddy cultivation in arsenic enriched areas. In: Sengupta D (ed) Recent trends in modelling of environmental contaminants. Springer, India, pp 28–30

    Google Scholar 

  • Seyfferth AL, Fendorf S (2012) Silicate mineral impacts on the uptake and storage of arsenic and plant nutrients in rice (Oryza sativa L.). Environ Sci Technol 46:13176–13183

    Article  CAS  Google Scholar 

  • Seyfferth AL, Webb SM, Andrews JC, Fendorf S (2010) Arsenic localization, speciation, and co-occurrence with iron on rice (Oryza sativa L.) roots having variable Fe coatings. Environ Sci Technol 44:8108–8113

    Article  CAS  Google Scholar 

  • Seyfferth AL, Samuel MW, Andrews JC, Fendorf S (2011) Defining the distribution of arsenic species and plant nutrients in rice (Oryza sativa L.) from the root to the grain. Geochim Cosmochim Acta 75:6655–6671

    Article  CAS  Google Scholar 

  • Somenahally AC, Hollister EB, Yan W, Gentry TJ, Loepper RH (2011) Water management impacts on arsenic speciation and iron-reducing bacteria in contrasting rice-rhizosphere compartments. Environ Sci Technol 45:8328–8335

    Article  CAS  Google Scholar 

  • Song WY, Yamaki T, Yamaji N, Ko D, Jung KH, Fujii-Kashino M, An G, Martinoia E, Lee Y, Ma JF (2014) A rice ABC transporter, OsABCC1, reduces arsenic accumulation in the grain. Proc Natl Acad Sci 111:15699–15704

    Article  CAS  Google Scholar 

  • Stroud JL, Khan MA, Norton GJ, Islam MR, Dasgupta T, Zhu YG, Price AH, Meharg AA, McGrath SP, Zhao FJ (2011) Assessing the labile arsenic pool in contaminated paddy soils by isotopic dilution techniques and simple extractions. Environ Sci Technol 45:4262–4269

    Article  CAS  Google Scholar 

  • Su YH, McGrath SP, Zhao FJ (2010) Rice is more efficient in arsenite uptake and translocation than wheat and barley. Plant Soil 328:27–34

    Article  CAS  Google Scholar 

  • Sun HJ, Rathinasabapathi B, Wu B, Luo J, Pu LP, Ma LQ (2014) Arsenic and selenium toxicity and their interactive effects in humans. Environ Int 69:148–158

    Article  CAS  Google Scholar 

  • Syu CH, Jiang PY, Huang HH, Chen WT, Lin TH, Lee DY (2013) Arsenic sequestration in iron plaque and its effect on As uptake by rice plants grown in paddy soils with high contents of As, iron oxides, and organic matter. Soil Sci Plant Nutr 59:463–471

    Article  CAS  Google Scholar 

  • Tian Y, Wang XR, Luo J, Yu HX, Zhang H (2008) Evaluation of holistic approaches to predicting the concentrations of metals in field cultivated rice. Environ Sci Technol 42:7649–7654

    Article  CAS  Google Scholar 

  • Tripathi P, Tripathi RD, Singh RP, Dwivedi S, Goutam D, Shri M, Trivedi PK, Chakrabarty D (2013) Silicon mediates arsenic tolerance in rice (Oryza sativa L.) through lowering of arsenic uptake and improved antioxidant defence system. Ecol Eng 52:96–103

    Article  Google Scholar 

  • Williams PN, Price AH, Raab A, Feldmann J, Hossain SA, Meharg AA (2005) Variation in arsenic speciation and concentration in paddy rice related to dietary exposure. Environ Sci Technol 39:5531–5540

    Article  CAS  Google Scholar 

  • Williams PN, Raab A, Feldmann J, Meharg AA (2007) Market basket survey shows elevated levels of As in south central U.S. processed rice compared to California: consequences for human dietary exposure. Environ Sci Technol 41:2178–2183

    Article  CAS  Google Scholar 

  • Williams PN, Lei M, Sun G, Huang Q, Lu Y, Deacon C, Meharg AA, Zhu YG (2009a) Occurrence and partitioning of cadmium, arsenic and lead in mine impacted paddy rice: Hunan, China. Environ Sci Technol 43:637–642

    Article  CAS  Google Scholar 

  • Williams PN, Islam S, Islam R, Jahiruddin M, Adomako E, Soliaman AR, Rahman GKMM, Lu Y, Deacon C, Zhu YG, Meharg AA (2009b) Arsenic limits trace mineral nutrition (selenium, zinc, and nickel) in Bangladesh rice grain. Environ Sci Technol 43:8430–8436

    Article  CAS  Google Scholar 

  • Williams PN, Zhang H, Davison W, Meharg AA, Hossain M, Norton GJ, Islam MR, Brammer H (2011) Organic matter-solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils. Environ Sci Technol 45:6080–6087

    Article  CAS  Google Scholar 

  • Wu C, Ye Z, Shu WS, Zhu YG, Wong MH (2011) Arsenic accumulation and speciation in rice are affected by root aeration and variation of genotypes. J Exp Bot 62:2889–2898

    Article  CAS  Google Scholar 

  • Wu C, Li H, Ye Z, Wu F, Wong MH (2013a) Effects of As levels on radial oxygen loss and As speciation in rice. Environ Sci Pollut Res 20:8334–8341

    Article  CAS  Google Scholar 

  • Wu F, Hu J, Wu S, Wong MH (2013b) Grain yield and arsenic uptake of upland rice inoculated with arbuscular mycorrhizal fungi in As-spiked soils. Environ Sci Pollut Res 1–8

  • Xu XY, McGrath SP, Zhao FJ (2007) Rapid reduction of arsenate in the medium mediated by plant roots. New Phytol 176:590–599

    Article  CAS  Google Scholar 

  • Xu XY, McGrath SP, Meharg AA, Zhao FJ (2008) Growing rice aerobically markedly decreases arsenic accumulation. Environ Sci Technol 42:5574–5579

    Article  CAS  Google Scholar 

  • Yamaguchi N, Ohkura T, Takahashi Y, Maejima Y, Arao T (2014) Arsenic distribution and speciation near rice roots influenced by iron plaques and redox conditions of the soil matrix. Environ Sci Technol 48:1549–1556

    Article  CAS  Google Scholar 

  • Yang X, Hou Q, Yang Z, Zhang X, Hou Y (2012) Solid-solution partitioning of arsenic (As) in the paddy soil profiles in Chengdu Plain, Southwest China. Geosci Front 3:901–909

    Article  CAS  Google Scholar 

  • Ye J, Rensing C, Rosen BP, Zhu YG (2012) Arsenic biomethylation by photosynthetic organisms. Trends Plant Sci 17:155–162

    Article  CAS  Google Scholar 

  • Zavala YJ, Gerads R, Gürleyük H, Duxbury JM (2008) Arsenic in rice: II. Arsenic speciation in USA grain and implications for human health. Environ Sci Technol 42:3861–3866

    Article  CAS  Google Scholar 

  • Zhao FJ, Ma JF, McGrath SP, Meharg AA (2009) Arsenic uptake and metabolism in plants. New Phytol 181:777–794

    Article  CAS  Google Scholar 

  • Zhao FJ, Ago Y, Mitani N, Li RY, Su YH, Yamaji N, McGrath SP, Ma JF (2010a) The role of the rice aquaporin Lsi1 in arsenite efflux from roots. New Phytol 186:392–399

    Article  CAS  Google Scholar 

  • Zhao FJ, McGrath SP, Meharg AA (2010b) Arsenic as a food chain contaminant: mechanisms of plant uptake and metabolism and mitigation strategies. Annu Rev Plant Biol 61:535–559

    Article  CAS  Google Scholar 

  • Zhao FJ, Stroud J, Khan M, McGrath SP (2012) Arsenic translocation in rice investigated using radioactive 73As tracer. Plant Soil 350:413–420

    Article  CAS  Google Scholar 

  • Zhao FJ, Zhu YG, Meharg AA (2013a) Methylated arsenic species in rice: geographical variation, origin, and uptake mechanisms. Environ Sci Technol 47:3957–3966

    Article  CAS  Google Scholar 

  • Zhao FJ, Harris E, Yan J, Ma J, Wu L, Liu W, McGrath SP, Zhou J, Zhu YG (2013b) Arsenic methylation in soils and its relationship with microbial arsM abundance and diversity, and As speciation in rice. Environ Sci Technol 47:7147–7154

    CAS  Google Scholar 

  • Zheng RL, Cai C, Liang JH, Huang Q, Chen Z, Huang YZ, Arp HPH, Sun GX (2012) The effects of biochars from rice residue on the formation of iron plaque and the accumulation of Cd, Zn, Pb, As in rice (Oryza sativa L.) seedlings. Chemosphere 89:856–862

    Article  CAS  Google Scholar 

  • Zheng MZ, Li G, Sun GX, Shim H, Cai C et al (2013a) Differential toxicity and accumulation of inorganic and methylated arsenic in rice. Plant Soil 365:227–238

    Article  CAS  Google Scholar 

  • Zheng RL, Sun GX, Zhu YG (2013b) Effects of microbial processes on the fate of arsenic in paddy soil. Chin Sci Bull 58:186–193

    Article  CAS  Google Scholar 

  • Zhu YG, Sun GX, Lei M, Teng M, Liu YX, Chen NC, Wang LH, Carey AM, Deacon C, Raab A, Meharg AA, Williams PN (2008) High percentage inorganic arsenic content of mining impacted and nonimpacted Chinese rice. Environ Sci Technol 42:5008–5013

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (41301339), the Construct Program of the Key Discipline in Hunan Province (China), Aid program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, and Hunan Provincial Natural Science Foundation of China (No. 13JJ4044 ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Peng, B., Tan, C. et al. Recent advances in arsenic bioavailability, transport, and speciation in rice. Environ Sci Pollut Res 22, 5742–5750 (2015). https://doi.org/10.1007/s11356-014-4065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-014-4065-3

Keywords

Navigation